Skip to main content

Exciton-Polariton Condensates in Zero-, One-, and Two-Dimensional Lattices

  • Chapter
Physics of Quantum Fluids

Abstract

Microcavity exciton-polaritons are quantum quasi-particles arising from the strong light-matter coupling. They have exhibited rich quantum dynamics rooted from bosonic nature and inherent non-equilibrium condition. Dynamical condensation in microcavity exciton-polaritons has been observed at much elevated temperatures in comparison to ultracold atom condensates. Recently, we have investigated the behavior of exciton-polariton condensates in artificial trap and lattice geometries in zero-dimension, one-dimension (1D) and two-dimension (2D). Coherent π-state with p-wave order in a 1D condensate array and d-orbital state in a 2D square lattice are observed. We anticipate that the preparation of high-orbital condensates can be further extended to probe dynamical quantum phase transition in a controlled manner as quantum emulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, Hoboken, 1975)

    MATH  Google Scholar 

  2. S. Haroche, D. Kleppner, Phys. Today 42, 24 (1989)

    Article  ADS  Google Scholar 

  3. K.J. Vahala, Nature 424, 839 (2003)

    Article  ADS  Google Scholar 

  4. C. Weisbuch et al., Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  5. A. Kavokin, Cavity Polaritons, vol. 32 (Academic Press, San Diego, 2003)

    Book  Google Scholar 

  6. Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics, 1st edn. (Springer, Berlin, 2000)

    Google Scholar 

  7. H. Deng, H. Haug, Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010)

    Article  ADS  Google Scholar 

  8. B. Deveaud-Plédran, Nature 453, 297 (2008)

    Article  ADS  Google Scholar 

  9. T.C.H. Liew, I.A. Shelykh, G. Malpuech, Physica E 43, 1543 (2011)

    Article  ADS  Google Scholar 

  10. A. Imamoglu et al., Phys. Rev. A 53, 4259 (1996)

    Article  ADS  Google Scholar 

  11. H. Deng et al., Science 298, 199 (2002)

    Article  ADS  Google Scholar 

  12. H. Deng et al., Proc. Natl. Acad. Sci. USA 100, 15318 (2003)

    Article  ADS  Google Scholar 

  13. J. Kapsrzak et al., Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  14. H. Deng et al., Phys. Rev. Lett. 97, 146402 (2006)

    Article  ADS  Google Scholar 

  15. H. Deng et al., Phys. Rev. Lett. 99, 126403 (2007)

    Article  ADS  Google Scholar 

  16. R.B. Balili et al., Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  17. C.-W. Lai et al., Nature 450, 529 (2007)

    Article  ADS  Google Scholar 

  18. S. Christopoulos et al., Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  19. G. Christmann et al., Appl. Phys. Lett. 93, 051102 (2008)

    Article  ADS  Google Scholar 

  20. S. Kena Cohen, S.R. Forrest, Nat. Photonics 4, 371 (2010)

    Article  ADS  Google Scholar 

  21. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  22. P.C. Hohenberg, Phys. Rev. 158, 383 (1967)

    Article  ADS  Google Scholar 

  23. J.M. Kosterlitz, D.J. Thouless, J. Phys. C, Solid State Phys. 6, 1181 (1973)

    Article  ADS  Google Scholar 

  24. J.M. Kosterlitz, J. Phys. C, Solid State Phys. 7, 1046 (1974)

    Article  ADS  Google Scholar 

  25. V.L. Berezinskii, Zh. Èksp. Teor. Fiz. 61, 1144 (1971) (Engl. Trans. Sov. Phys.-JETP 34, 610 (1972))

    Google Scholar 

  26. K.G. Lagoudakis et al., Nat. Phys. 4, 706 (2008)

    Article  Google Scholar 

  27. K.G. Lagoudaki et al., Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  28. D. Sanvitto et al., Phys. Rev. B 80, 045301 (2009)

    Article  ADS  Google Scholar 

  29. G. Roumpos et al., Phys. Rev. Lett. 104, 126403 (2010)

    Article  ADS  Google Scholar 

  30. J. Bloch et al., Physica E 2, 915 (1998)

    Article  ADS  Google Scholar 

  31. T. Gutbrod et al., Phys. Rev. B 57, 9950 (1998)

    Article  ADS  Google Scholar 

  32. M. Obert et al., Appl. Phys. Lett. 84, 1435 (2004)

    Article  ADS  Google Scholar 

  33. D. Bajoni et al., Phys. Rev. Lett. 100, 047401 (2008)

    Article  ADS  Google Scholar 

  34. L. Ferrier et al., Phys. Rev. Lett. 106, 126401 (2011)

    Article  ADS  Google Scholar 

  35. E. Wertz et al., Nat. Phys. 6, 860 (2010)

    Article  Google Scholar 

  36. M. Galbiati (2011). arXiv:1110.0359

  37. O. El Daïf et al., Appl. Phys. Lett. 88, 061105 (2006)

    Article  ADS  Google Scholar 

  38. R. Idrissi Kaitouni et al., Phys. Rev. B 74, 155311 (2006)

    Article  ADS  Google Scholar 

  39. G. Nardin et al., Phys. Rev. B 82, 045304 (2007)

    Article  ADS  Google Scholar 

  40. T.A. Fisher et al., Phys. Rev. B 51, 2600 (1995)

    Article  ADS  Google Scholar 

  41. D.A.B. Miller et al., Phys. Rev. B 32, 1043 (1985)

    Article  ADS  Google Scholar 

  42. R.B. Balili et al., Appl. Phys. Lett. 88, 031110 (2006)

    Article  ADS  Google Scholar 

  43. R. Balili et al., Phys. Rev. B 79, 075319 (2009)

    Article  ADS  Google Scholar 

  44. B. Nelsen et al., J. Appl. Phys. 105, 122414 (2009)

    Article  ADS  Google Scholar 

  45. A.L. Ivanov, P.B. Littewood, Phys. Rev. Lett. 87, 136403 (2001)

    Article  ADS  Google Scholar 

  46. M.M. de Lima Jr. et al., Phys. Rev. Lett. 97, 045501 (2006)

    Article  ADS  Google Scholar 

  47. E.A. Cerda-Méndez et al., Phys. Rev. Lett. 105, 116402 (2010)

    Article  ADS  Google Scholar 

  48. N.Y. Kim et al., Phys. Status Solidi B 245, 1076 (2008)

    Article  ADS  Google Scholar 

  49. N.Y. Kim et al., Nat. Phys. 7, 681 (2011)

    Article  Google Scholar 

  50. P. Yeh, Optical Waves in Layered Media (Wiley, Hoboken, 2005)

    Google Scholar 

  51. S. Utsunomiya et al., Nat. Phys. 4, 700 (2008)

    Article  Google Scholar 

  52. N.N. Bogoliubov, J. Phys. 11, 23 (1947)

    Google Scholar 

  53. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon, Oxford, 2004)

    Google Scholar 

  54. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, New York, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Young Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, N.Y., Yamamoto, Y., Utsunomiya, S., Kusudo, K., Höfling, S., Forchel, A. (2013). Exciton-Polariton Condensates in Zero-, One-, and Two-Dimensional Lattices. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_8

Download citation

Publish with us

Policies and ethics