Skip to main content

High Resolution Electron Microscopy of Quantum Gases

  • Chapter
Physics of Quantum Fluids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 177))

  • 1847 Accesses

Abstract

The complete understanding of the properties of ultracold and degenerate samples requires the ability to probe and manipulate such systems with extremely high resolution and precision. The introduction of the scanning electron microscopy (SEM) techniques on ultracold atoms provides the necessary tool for such purposes, thus allowing the observation of several fundamental phenomena with unprecedented clarity. Thanks to its extremely high resolution (<100 nm) and to the single-atom sensitivity the SEM method permitted the first observation of in situ profiles of trapped Bose-Einstein condensates of 87Rb and of ultracold clouds in one- and two-dimensional optical lattices. Moreover the single lattice sites were selectively addressed and manipulated thus demonstrating the possibility to create arbitrary patterns of occupied sites. In addition to the spatial characteristics of ultracold samples the SEM technique allows for the investigation of their dynamical processes. Moreover, exploiting the single atom sensitivity of the method, second and higher order correlation functions can be measured as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Ketterle, D. Durfee, D. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics Enrico Fermi (IOS Press, Amsterdam, 1999)

    Google Scholar 

  2. E.W. Streed, A. Jechow, B.G. Norton, D. Kielpinski, Absorption imaging of a single atom. arXiv:1201.5280

  3. Z. Hu, H. Kimble, Observation of a single atom in a magneto-optical trap. Opt. Lett. 19, 1888–1890 (1994)

    Article  ADS  Google Scholar 

  4. N. Schlosser, G. Reymond, I. Protsenko, P. Grangier, Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001)

    Article  ADS  Google Scholar 

  5. S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, D. Meschede, Deterministic delivery of a single atom. Science 293, 278–280 (2001)

    Article  ADS  Google Scholar 

  6. D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel, D. Meschede, Neutral atom quantum register, Phys. Rev. Lett. 93, 150501 (2004)

    Article  ADS  Google Scholar 

  7. I. Teper, Y. Lin, V. Vuletic, Resonator-aided single-atom detection on a microfabricated chip. Phys. Rev. Lett. 97, 023002 (2006)

    Article  ADS  Google Scholar 

  8. K. Nelson, X. Li, D. Weiss, Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556–560 (2007)

    Article  Google Scholar 

  9. W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  10. J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  11. M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes, D. Boiron, A. Aspect, C.I. Westbrook, Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005)

    Article  ADS  Google Scholar 

  12. T. Jeltes, J.M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, C.I. Westbrook, Comparison of the Hanbury Brown-Twiss effect for bosons and fermions. Nature 445, 402–405 (2007)

    Article  ADS  Google Scholar 

  13. T. Gericke, P. Würtz, D. Reitz, T. Langen, H. Ott, High resolution scanning electron microscopy of an ultracold quantum gas. Nat. Phys. 4, 949–953 (2008)

    Article  Google Scholar 

  14. T. Gericke, P. Würtz, D. Reitz, C. Utfeld, H. Ott, All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy. Appl. Phys. B 89, 447–451 (2007)

    Article  ADS  Google Scholar 

  15. T. Gericke, A scanning electron microscope for ultracold quantum gases. PhD thesis, Johannes Gutenberg Universität, Mainz, 2010

    Google Scholar 

  16. P.W. Hawkes, E. Kasper, Principles of Electron Optics (Academic Press, San Diego, 1996)

    Google Scholar 

  17. P. Würtz, T. Gericke, T. Langen, A. Koglbauer, H. Ott, Probing Bose-Einstein condensates by electron impact ionization. J. Phys. Conf. Ser. 141, 012020 (2008)

    Article  ADS  Google Scholar 

  18. P. Würtz, T. Langen, T. Gericke, A. Koglbauer, H. Ott, Experimental demonstration of single-site addressability in a two-dimensional optical lattice. Phys. Rev. Lett. 103, 080404 (2009)

    Article  Google Scholar 

  19. P. Würtz, T. Gericke, A. Vogler, F. Etzold, H. Ott, Image formation in scanning electron microscopy of ultracold atoms. Appl. Phys. B 98, 641–645 (2010)

    Article  ADS  Google Scholar 

  20. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules-the Bethe theory revisited. Rev. Mod. Phys. 43, 297–347 (1971)

    Article  ADS  Google Scholar 

  21. M.A. Coplan, J.H. Moore, J.U.P. Doering, (e,2e) spectroscopy. Rev. Mod. Phys. 66, 985–1014 (1994)

    Article  ADS  Google Scholar 

  22. P. Würtz, T. Gericke, A. Vogler, H. Ott, Ultracold atoms as a target: Absolute scattering cross-section measurements. New J. Phys. 12, 065033 (2010)

    Article  Google Scholar 

  23. R. Côté, A. Dalgarno, Ultracold atom-ion collisions. Phys. Rev. A 62, 012729 (2000)

    Article  Google Scholar 

  24. V. Guarrera, P. Würtz, A. Ewerbeck, A. Vogler, G. Barontini, H. Ott, Observation of local temporal correlations in trapped quantum gases. Phys. Rev. Lett. 107, 160403 (2011)

    Article  ADS  Google Scholar 

  25. M. Naraschewski, R.J. Glauber, Phys. Rev. A 59, 4595 (1999)

    Article  ADS  Google Scholar 

  26. K.V. Kheruntsyan, D.M. Gangardt, P.D. Drummond, G.V. Shlyapnikov, Pair correlations in a finite-temperature 1D Bose gas. Phys. Rev. Lett. 91, 040403 (2003)

    Article  ADS  Google Scholar 

  27. J. Caux, P. Calabrese, Dynamical density-density correlations in the one-dimensional Bose gas. Phys. Rev. A 74, 031605 (2006)

    Article  ADS  Google Scholar 

  28. D. Muth, M. Fleischhauer, Dynamics of pair correlations in the attractive Lieb-Liniger gas. Phys. Rev. Lett. 105, 150403 (2010)

    Article  ADS  Google Scholar 

  29. V.A. Brazhnyi, V.V. Konotop, V.M. Perez-Garcia, H. Ott, Dissipation-induced coherent structures in Bose-Einstein condensates. Phys. Rev. Lett. 102, 144101 (2009)

    Article  ADS  Google Scholar 

  30. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, T. Pfau, Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007)

    Article  ADS  Google Scholar 

  31. M. Reetz-Lamopur, T. Amthor, J. Deiglmayr, M. Weidemüller, Rabi oscillations and excitation trapping in the coherent excitation of a mesoscopic frozen Rydberg gas. Phys. Rev. Lett. 100, 253001 (2008)

    Article  ADS  Google Scholar 

  32. E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009)

    Article  Google Scholar 

  33. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115–118 (2009)

    Article  Google Scholar 

  34. M. Saffman, T.G. Walker, K. Molmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  Google Scholar 

  35. H. Weimer, R. Löw, T. Pfau, H.P. Büchler, Quantum critical behavior in strongly interacting Rydberg gases. Phys. Rev. Lett. 101, 250601 (2008)

    Article  ADS  Google Scholar 

  36. S. Inouye, J. Goldwin, M.L. Olsen, C. Ticknor, J.L. Bohn, D.S. Jin, Observation of heteronuclear Feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett. 93, 183201 (2004)

    Article  ADS  Google Scholar 

  37. B. DeMarco, D.S. Jin, Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999)

    Article  Google Scholar 

  38. G. Modugno, G. Ferrari, G. Roati, R.J. Brecha, A. Simoni, M. Inguscio, Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science 294, 1320–1322 (2001)

    Article  ADS  Google Scholar 

  39. G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, M. Inguscio, Double species Bose-Einstein condensate with tunable interspecies interactions. Phys. Rev. Lett. 100, 210402 (2008)

    Article  ADS  Google Scholar 

  40. S. Ospelkaus, A. Pe’er, K.-K. Ni, J.J. Zirbel, B. Neyenhuis, S. Kotochigova, P.S. Julienne, J. Ye, D.S. Jin, Efficient state transfer in an ultracold dense gas of heteronuclear molecules. Nat. Phys. 4, 622–626 (2008)

    Article  Google Scholar 

  41. J.G. Danzl, E. Haller, M. Gustavsson, M.J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.-C. Nägerl, Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Barontini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barontini, G., Ott, H. (2013). High Resolution Electron Microscopy of Quantum Gases. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_18

Download citation

Publish with us

Policies and ethics