Skip to main content

Universal Thermodynamics of a Unitary Fermi Gas

  • Chapter
Physics of Quantum Fluids

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 177))

  • 1864 Accesses

Abstract

A Fermi gas at the unitarity limit, where the scattering length diverges, is believed to exhibit universal thermodynamics. Recently, it has become possible to derive thermodynamic properties of a uniform system from those of a harmonically trapped system, enabling one to directly compare experimental results with many-body theories. In this chapter, we provide an overview of theories and experiments on the thermodynamics of a unitary Fermi gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A.R. Sa de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)

    Article  ADS  Google Scholar 

  2. M.E. Gehm, S.L. Hemmer, S.R. Granade, K.M. O’Hara, J.E. Thomas, Phys. Rev. A 68, 011401(R) (2003)

    ADS  Google Scholar 

  3. K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298, 2179 (2002)

    Article  ADS  Google Scholar 

  4. M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 92, 120401 (2004)

    Article  ADS  Google Scholar 

  5. C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. Hecker Denschlag, R. Grimm, Science 305, 1128 (2004)

    Article  ADS  Google Scholar 

  6. C. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  7. M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  Google Scholar 

  8. The Many-Body Challenge Problem (mbx) formulated by G.F. Bertsch in (1999)

    Google Scholar 

  9. H. Heiselberg, Phys. Rev. A 63, 043606 (2001)

    Article  ADS  Google Scholar 

  10. T.-L. Ho, E.J. Mueller, Phys. Rev. Lett. 92, 160404 (2004)

    Article  ADS  Google Scholar 

  11. T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, C. Salomon, Phys. Rev. Lett. 93, 050401 (2004)

    Article  ADS  Google Scholar 

  12. M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 92, 120401 (2004)

    Article  ADS  Google Scholar 

  13. J. Kinast, A. Turlapov, J.E. Thomas, Q. Chen, J. Stajic, K. Levin, Science 307, 1296 (2005)

    Article  ADS  Google Scholar 

  14. J.T. Stewart, J.P. Gaebler, C.A. Regal, D.S. Jin, Phys. Rev. Lett. 97, 220406 (2006)

    Article  ADS  Google Scholar 

  15. G.B. Partridge, W. Li, R.I. Kamar, Y.A. Liao, R.G. Hulet, Science 311, 503 (2006)

    Article  ADS  Google Scholar 

  16. Y.I. Shin, C.H. Schunck, A. Schirotzek, W. Ketterle, Phys. Rev. Lett. 99, 090403 (2007)

    Article  ADS  Google Scholar 

  17. L. Luo, J.E. Thomas, J. Low Temp. Phys. 154, 1 (2009)

    Article  ADS  Google Scholar 

  18. J. Joseph, B. Clancy, L. Luo, J. Kinast, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 98, 170401 (2007)

    Article  ADS  Google Scholar 

  19. M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335, 563 (2012)

    Article  ADS  Google Scholar 

  20. T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004)

    Article  ADS  Google Scholar 

  21. J.E. Thomas, J. Kinast, A. Turlapov, Phys. Rev. Lett. 95, 120402 (2005)

    Article  ADS  Google Scholar 

  22. C. Cao, E. Elliott, H. Wu, J.E. Thomas, New J. Phys. 13, 075007 (2011)

    Article  ADS  Google Scholar 

  23. H. Hu, P.D. Drummond, X.-J. Liu, Nat. Phys. 3, 469 (2007)

    Article  Google Scholar 

  24. A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006)

    Article  ADS  Google Scholar 

  25. E. Burovski, N. Prokof’ev, B. Svistunov, M. Troyer, Phys. Rev. Lett. 96, 160402 (2006)

    Article  ADS  Google Scholar 

  26. H. Hu, X.-J. Liu, P.D. Drummond, Phys. Rev. A 73, 023617 (2006)

    Article  ADS  Google Scholar 

  27. R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A 75, 023610 (2007)

    Article  ADS  Google Scholar 

  28. K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B. Svistunov, M. Ku, A. Sommer, L.W. Cheuk, A. Schirotzek, M.W. Zwierlein, arXiv:1110.3747 (2011)

  29. S. Tan, Ann. Phys. 323, 2952 (2008)

    Article  ADS  MATH  Google Scholar 

  30. S. Tan, Ann. Phys. 323, 2971 (2008)

    Article  ADS  MATH  Google Scholar 

  31. S. Tan, Ann. Phys. 323, 2987 (2008)

    Article  ADS  MATH  Google Scholar 

  32. L. Viverit, S. Giorgini, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 69, 013607 (2004)

    Article  ADS  Google Scholar 

  33. E. Braaten, arXiv:1008.2922

  34. J.T. Stewart, J.P. Gaebler, T.E. Drake, D.S. Jin, Phys. Rev. Lett. 104, 235301 (2010)

    Article  ADS  Google Scholar 

  35. E.D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P.D. Drummond, P. Hannaford, C.J. Vale, Phys. Rev. Lett. 105, 070402 (2010)

    Article  ADS  Google Scholar 

  36. M. Horikoshi, S. Nakajima, M. Ueda, T. Mukaiyama, Science 327, 442 (2010)

    Article  ADS  Google Scholar 

  37. Thermometer that was used in [36] turned out to be not accurate and has been updated [22, p. 38]. The data presented in this chapter are the results analyzed using the updated thermometer

    Google Scholar 

  38. S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Nature 463, 1057 (2010)

    Article  ADS  Google Scholar 

  39. T.-L. Ho, Q. Zhou, Nat. Phys. 6, 131 (2010)

    Article  Google Scholar 

  40. S. Nascimbène, N. Navon, F. Chevy, C. Salomon, New J. Phys. 12, 103026 (2010)

    Article  ADS  Google Scholar 

  41. Y. Nishida, Phys. Rev. A 75, 063618 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.T. Stewart, J.P. Gaebler, D.S. Jin, Nature 454, 744 (2008)

    Article  ADS  Google Scholar 

  43. J.P. Gaebler, J.T. Stewart, T.E. Drake, D.S. Jin, A. Perali, P. Pieri, G.C. Strinati, Nat. Phys. 6, 569 (2010)

    Article  Google Scholar 

  44. A. Sommer, M. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

    Article  ADS  Google Scholar 

  45. S.B. Papp, J.M. Pino, R.J. Wild, S. Ronen, C.E. Wieman, D.S. Jin, E.A. Cornell, Phys. Rev. Lett. 101, 135301 (2008)

    Article  ADS  Google Scholar 

  46. N. Navon, S. Piatecki, K. Günter, B. Rem, T.C. Nguyen, F. Chevy, W. Krauth, C. Salomon, Phys. Rev. Lett. 107, 135301 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukaiyama, T., Ueda, M. (2013). Universal Thermodynamics of a Unitary Fermi Gas. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_17

Download citation

Publish with us

Policies and ethics