Advertisement

Superfluid Instability and Critical Velocity in Two and Three Dimensions

  • F. Piazza
  • L. A. Collins
  • A. Smerzi
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 177)

Abstract

Using the mean-field GP equation, we study the dynamics of superfluid dilute Bose-Einstein condensates (BECs) in the regime where the flow velocity reaches a critical value above which stationary currents are impossible. We present results for two- and three-dimensional BECs in two different geometries: a toroidal and a waveguide configuration, and also discuss the behavior of the critical current, or critical velocity, establishing a general criterion for the breakdown of stationary superfluid flows.

Keywords

Vortex Ring Critical Velocity Vortex Core Vortex Line Instability Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Aftalion, I. Danaila, Giant vortices in combined harmonic and quartic traps. Phys. Rev. A 69(3), 033608 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    A. Aftalion, Q. Du, Y. Pomeau, Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose-Einstein condensate. Phys. Rev. Lett. 91(9), 090407 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Anderson, Considerations on the flow of superfluid helium. Rev. Mod. Phys. 38(2), 298–310 (1966) ADSCrossRefGoogle Scholar
  4. 4.
    M. Benakli, S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Macroscopic angular-momentum states of Bose-Einstein condensates in toroidal traps. Europhys. Lett. 46(3), 275–281 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    N.G. Berloff, P.H. Roberts, Motions in a Bose condensate: X. new results on the stability of axisymmetric solitary waves of the Gross-Pitaevskii equation. J. Phys. A, Math. Gen. 37(47), 11333 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    F. Bloch, Superfluidity in a ring. Phys. Rev. A 7(6), 2187–2191 (1973) ADSCrossRefGoogle Scholar
  7. 7.
    I. Carusotto, S.X. Hu, L.A. Collins, A. Smerzi, Bogoliubov-Čerenkov radiation in a Bose-Einstein condensate flowing against an obstacle. Phys. Rev. Lett. 97(26), 260403 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    P. Cladé, C. Ryu, A. Ramanathan, K. Helmerson, W.D. Phillips, Observation of a 2d Bose gas: From thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102(17), 170401 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    L.A. Collins, J.D. Kress, R.B. Walker, Excitation and ionization of molecules by a single-mode laser field using a time-dependent approach. Comput. Phys. Commun. 114(1-3), 15–26 (1998). ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    M. Cozzini, B. Jackson, S. Stringari, Vortex signatures in annular Bose-Einstein condensates. Phys. Rev. A 73(1), 013603 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    P. Engels, C. Atherton, Stationary and nonstationary fluid flow of a Bose-Einstein condensate through a penetrable barrier. Phys. Rev. Lett. 99(16), 160405 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    C.J. Foster, P.B. Blakie, M.J. Davis, Vortex pairing in two-dimensional Bose gases. Phys. Rev. A 81(2), 023623 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    T. Frisch, Y. Pomeau, S. Rica, Transition to dissipation in a model of superflow. Phys. Rev. Lett. 69(11), 1644–1647 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    V. Hakim, Nonlinear Schrödinger flow past an obstacle in one dimension. Phys. Rev. E 55(3), 2835–2845 (1997) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    E. Hoskinson, Y. Sato, I. Hahn, R.E. Packard, Transition from phase slips to the Josephson effect in a superfluid 4He weak link. Nat. Phys. 2, 23–26 (2006) CrossRefGoogle Scholar
  16. 16.
    S. Inouye, S. Gupta, T. Rosenband, A.P. Chikkatur, A. Görlitz, T.L. Gustavson, A.E. Leanhardt, D.E. Pritchard, W. Ketterle, Observation of vortex phase singularities in Bose-Einstein condensates. Phys. Rev. Lett. 87(8), 080402 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    B. Jackson, J.F. McCann, C.S. Adams, Vortex formation in dilute inhomogeneous Bose-Einstein condensates. Phys. Rev. Lett. 80(18), 3903–3906 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    C.A. Jones, P.H. Roberts, Motions in a Bose condensate. IV. Axisymmetric solitary waves. J. Phys. A, Math. Gen. 15(8), 2599 (1982) ADSCrossRefGoogle Scholar
  19. 19.
    C.A. Jones, S.J. Putterman, P.H. Roberts, Motions in a Bose condensate. V. Stability of solitary wave solutions of non-linear Schrödinger equations in two and three dimensions. J. Phys. A, Math. Gen. 19(15), 2991 (1986) ADSCrossRefGoogle Scholar
  20. 20.
    V.V. Konotop, L. Pitaevskii, Landau dynamics of a grey soliton in a trapped condensate. Phys. Rev. Lett. 93(24), 240403 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987) zbMATHGoogle Scholar
  22. 22.
    A.J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 73(2), 307–356 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Leszczyszyn, G.A. El, Y.G. Gladush, A.M. Kamchatnov, Transcritical flow of a Bose-Einstein condensate through a penetrable barrier. Phys. Rev. A 79(6), 063608 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    W.A. Little, Decay of persistent currents in small superconductors. Phys. Rev. 156(2), 396–403 (1967) ADSCrossRefGoogle Scholar
  25. 25.
    J.-P. Martikainen, K.-A. Suominen, L. Santos, T. Schulte, A. Sanpera, Generation and evolution of vortex-antivortex pairs in Bose-Einstein condensates. Phys. Rev. A 64(6), 063602 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    P. Mason, N.G. Berloff, Dynamics of quantum vortices in a toroidal trap. Phys. Rev. A 79(4), 043620 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    H.M. Nilsen, G. Baym, C.J. Pethick, Velocity of vortices in inhomogeneous Bose-Einstein condensates. Proc. Natl. Acad. Sci. 103(21), 7978–7981 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    R. Onofrio, C. Raman, J.M. Vogels, J.R. Abo-Shaeer, A.P. Chikkatur, W. Ketterle, Observation of superfluid flow in a Bose-Einstein condensed gas. Phys. Rev. Lett. 85(11), 2228–2231 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    N. Pavloff, Breakdown of superfluidity of an atom laser past an obstacle. Phys. Rev. A 66(1), 013610 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    C.-T. Pham, C. Nore, M.-É. Brachet, Boundary layers and emitted excitations in nonlinear Schrödinger superflow past a disk. Phys. D, Nonlinear Phenom. 210(3–4), 203–226 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    F. Piazza, L.A. Collins, A. Smerzi, Vortex-induced phase-slip dissipation in a toroidal Bose-Einstein condensate flowing through a barrier. Phys. Rev. A 80(2), 021601 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    F. Piazza, L.A. Collins, A. Smerzi, Instability and vortex ring dynamics in a three-dimensional superfluid flow through a constriction. New J. Phys. 13(4), 043008 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    E.P. Pitaevskii, Nuovo Cimento 20, 454 (1961) CrossRefGoogle Scholar
  34. 34.
    L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961) MathSciNetGoogle Scholar
  35. 35.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003) zbMATHGoogle Scholar
  36. 36.
    A. Ramanathan, K.C. Wright, S.R. Muniz, M. Zelan, W.T. Hill, C.J. Lobb, K. Helmerson, W.D. Phillips, G.K. Campbell, Superflow in a toroidal Bose-Einstein condensate: An atom circuit with a tunable weak link. Phys. Rev. Lett. 106(13), 130401 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99(26), 260401 (2007) ADSCrossRefGoogle Scholar
  38. 38.
    B.I. Schneider, L.A. Collins, S.X. Hu, Parallel solver for the time-dependent linear and nonlinear Schrödinger equation. Phys. Rev. E 73(3), 036708 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    I. Shomroni, E. Lahoud, S. Levy, J. Steinhauer, Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate. Nat. Phys. 5, 193–197 (2009) CrossRefGoogle Scholar
  40. 40.
    T.P. Simula, N. Nygaard, S.X. Hu, L.A. Collins, B.I. Schneider, K. Mølmer, Angular momentum exchange between coherent light and matter fields. Phys. Rev. A 77(1), 015401 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    M. Stone, A.M. Srivastava, Boundary layer separation and vortex creation in superflow through small orifices. J. Low Temp. Phys. 102, 445–459 (1996). doi: 10.1007/BF00755123 ADSCrossRefGoogle Scholar
  42. 42.
    J. Tempere, J.T. Devreese, E.R.I. Abraham, Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap. Phys. Rev. A 64(2), 023603 (2001) ADSCrossRefGoogle Scholar
  43. 43.
    M. Tsubota, K. Kasamatsu, M. Ueda, Vortex lattice formation in a rotating Bose-Einstein condensate. Phys. Rev. A 65(2), 023603 (2002) ADSCrossRefGoogle Scholar
  44. 44.
    W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys. 128, 167–231 (2002). doi: 10.1023/A:1019695418590 ADSCrossRefGoogle Scholar
  45. 45.
    G. Watanabe, F. Dalfovo, F. Piazza, L.P. Pitaevskii, S. Stringari, Critical velocity of superfluid flow through single-barrier and periodic potentials. Phys. Rev. A 80(5), 053602 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    T. Winiecki, B. Jackson, J.F. McCann, C.S. Adams, Vortex shedding and drag in dilute Bose-Einstein condensates. J. Phys. B, At. Mol. Opt. Phys. 33(19), 4069 (2000) ADSCrossRefGoogle Scholar
  47. 47.
    E. Zaremba, Sound propagation in a cylindrical Bose-Condensed gas. Phys. Rev. A 57(1), 518–521 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.INO-CNR, BEC Center and Dipartimento di FisicaUniversità di TrentoPovoItaly
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations