Skip to main content

Toward Room Temperature One-Dimensional Quantum Fluid in the Solid State: Exciton Polaritons in Zinc Oxide Microwires

  • Chapter

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 177))

Abstract

Exciton-polaritons in semiconductor nanostructures constitute a model system of quantum fluid of ultra light Bose excitations in a driven-dissipative situation. Owing to recent progresses in the domain of nanofabrications, polaritons environment may now be tuned at will in terms of external potential and dimensionality. In this chapter we present a nanostructure of particular interest to generate and manipulate one dimensional polaritons with unusual properties: ZnO microwires. Within such a structure we show that polaritons are stable at room temperature and have the property of being strongly decoupled from the lattice thermal vibrations, therefore naturally protected from thermal decoherence. We also find that at cryogenic temperature, the 1D superfluid phase is surprising as polaritons are much heavier than usual and quasi purely excitonic in nature. At room temperature, another polariton superfluid phase is also observed, and several experimental facts indicate that the strong coupling is well preserved in spite of a much larger critical density.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745 (2000)

    Article  ADS  Google Scholar 

  2. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. Brand, A.Y. Cherny, Dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit. Phys. Rev. A 72, 033619 (2005)

    Article  ADS  Google Scholar 

  4. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

  5. N. Wada, J. Taniguchi, H. Ikegami, S. Inagaki, Y. Fukushima, Helium-4 Bose fluids formed in one-dimensional 18 Å diameter pores. Phys. Rev. Lett. 86, 4322 (2001)

    Article  ADS  Google Scholar 

  6. S. Richard, F. Gerbier, J.H. Thywissen, M. Hugbart, P. Bouyer, A. Aspect, Momentum spectroscopy of 1D phase fluctuations in Bose-Einstein condensates. Phys. Rev. Lett. 91, 010405 (2003)

    Article  ADS  Google Scholar 

  7. T. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900 (2006)

    Article  ADS  Google Scholar 

  8. E. Haller, R. Hart, M.J. Mark, J.G. Danzl, L. Reichsöllner, M. Gustavsson, M. Dalmonte, G. Pupillo, H.-C. Nägerl, Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Nature 466, 597 (2010)

    Article  ADS  Google Scholar 

  9. T. Kinoshita, T. Wenger, D.S. Weiss, Local pair correlations in one-dimensional Bose gases. Phys. Rev. Lett. 95, 190406 (2005)

    Article  ADS  Google Scholar 

  10. E. Chow, P. Delsing, D.B. Haviland, Length-scale dependence of the superconductor-to-insulator quantum phase transition in one dimension. Phys. Rev. Lett. 81, 204 (1998)

    Article  ADS  Google Scholar 

  11. T. Giamarchi, C. Rüegg, O. Tchernyshyov, Bose-Einstein condensation in magnetic insulators. Nat. Phys. 4, 198 (2008)

    Article  Google Scholar 

  12. S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430 (2006)

    Article  ADS  Google Scholar 

  13. B.C. Watson, V.N. Kotov, M.W. Meisel, D.W. Hall, G.E. Granroth, W.T. Montfrooij, S.E. Nagler, D.A. Jensen, R. Backov, M.A. Petruska, G.E. Fanucci, D.R. Talham, Magnetic spin ladder (C5H12N)2CuBr4: High-field magnetization and scaling near quantum criticality. Phys. Rev. Lett. 86, 5168 (2001)

    Article  ADS  Google Scholar 

  14. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  15. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Bose-Einstein condensation of exciton polaritons. Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  16. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805 (2009)

    Article  Google Scholar 

  17. K.G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L.S. Dang, B. Deveaud-Plédran, Quantized vortices in an exciton-polariton condensate. Nat. Phys. 4, 706 (2008)

    Article  Google Scholar 

  18. K.G. Lagoudakis, T. Ostatnický, A.V. Kavokin, Y.G. Rubo, R. André, B. Deveaud-Plédran, Observation of half-quantum vortices in an exciton-polariton condensate. Science 326, 974 (2009)

    Article  ADS  Google Scholar 

  19. E. Wertz, L. Ferrier, D.D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart, G. Malpuech, J. Bloch, Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys. 6, 860 (2011)

    Article  Google Scholar 

  20. M.A. Kaliteevski, S. Brand, R.A. Abram, A. Kavokin, L.S. Dang, Whispering gallery polaritons in cylindrical cavities. Phys. Rev. B 75, 233309 (2007)

    Article  ADS  Google Scholar 

  21. L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z.Q. Zhu, X. Shen, Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity. Phys. Rev. Lett. 100, 156403 (2008)

    Article  ADS  Google Scholar 

  22. A. Trichet, L. Sun, G. Pavlovic, N.A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, L.S. Dang, One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature. Phys. Rev. B 83, 041302(R) (2011)

    Article  ADS  Google Scholar 

  23. K. Yu, Y.S. Zhang, R.L. Xu, S.X. Ouyang, D.M. Li, L.Q. Luo, Z.Q. Zhu, J. Ma, S.J. Xie, S.H. Han, H.R. Geng, Efficient field emission from tetrapod-like zinc oxide nanoneedles. Mater. Lett. 59, 1866 (2005)

    Article  Google Scholar 

  24. I.C. Robin, B. Gauron, P. Ferret, C. Tavares, G. Feuillet, L.S. Dang, B. Gayral, J.M. Gérard, Evidence for low density of nonradiative defects in ZnO nanowires grown by metal organic vapor-phase epitaxy. Appl. Phys. Lett. 91, 143120 (2007)

    Article  ADS  Google Scholar 

  25. A. Marzouki, F. Falyouni, N. Haneche, A. Lusson, P. Galtier, L. Rigutti, G. Jacopin, M. Tchernycheva, M. Oueslati, V. Sallet, Structural and optical characterizations of N-doped ZnO nanowires grown by MOCVD. Mater. Lett. 64, 2112 (2010)

    Article  Google Scholar 

  26. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  27. G. Pavlovic, G. Malpuech, N.A. Gippius, Dispersion and polarization conversion of whispering gallery modes in nanowires. Phys. Rev. B 82, 195328 (2010)

    Article  ADS  Google Scholar 

  28. J. Wiersig, Hexagonal dielectric resonators and microcrystal lasers. Phys. Rev. A 67, 023807 (2003)

    Article  ADS  Google Scholar 

  29. J.J. Hopfield, Finestructure in the optical absorption edge of anisotropic crystals. J. Phys. Chem. Solids 15, 97 (1960)

    Article  ADS  Google Scholar 

  30. D.G. Thomas, The exciton spectrum of zinc oxide. J. Phys. Chem. Solids 15, 86 (1960)

    Article  ADS  Google Scholar 

  31. M.R. Wagner, J.-H. Schulze, R. Kirste, M. Cobet, A. Hoffmann, C. Rauch, A.V. Rodina, B.K. Meyer, U. Röder, K. Thonke, Γ 7 valence band symmetry related hole fine splitting of bound excitons in ZnO observed in magneto-optical studies. Phys. Rev. B 80, 205203 (2009)

    Article  ADS  Google Scholar 

  32. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  33. C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J.M.M. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer, Heidelberg, 2010)

    Google Scholar 

  34. S.F. Chichibu, T. Sota, G. Cantwell, D.B. Eason, C.W. Litton, Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal. J. Appl. Phys. 93, 756 (2003)

    Article  ADS  Google Scholar 

  35. J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112, 1555 (1958)

    Article  ADS  MATH  Google Scholar 

  36. A.V. Kavokin, J.J. Baumberg, G. Malpuech, F. Laussy, Microcavities (Oxford University Press, London, 2007)

    Book  Google Scholar 

  37. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New York, 1998)

    Book  Google Scholar 

  38. Y. Li, F. Della Valle, M. Simonnet, I. Yamada, J.-J. Delaunay, Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Appl. Phys. Lett. 94, 023110 (2009)

    Article  ADS  Google Scholar 

  39. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008)

    Article  ADS  Google Scholar 

  40. S. Christopoulos, G.B.H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  41. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Reveret, J. Leymarie, J. Zúñiga-Perez, M. Leroux, F. Semond, S. Bouchoule, Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99, 161104 (2011)

    Article  ADS  Google Scholar 

  42. F. Manni, K.G. Lagoudakis, B. Pietka, L. Fontanesi, M. Wouters, V. Savona, R. André, B. Deveaud-Plédran, Polariton condensation in a one-dimensional disordered potential. Phys. Rev. Lett. 106, 176401 (2011)

    Article  ADS  Google Scholar 

  43. J.J. Baumberg, A. Kavokin, F. Laussy, G. Malpuech, Microcavities (Oxford University Press, New York, 2007)

    Google Scholar 

  44. H. Flayac, D.D. Solnyshkov, G. Malpuech, Oblique half-solitons and their generation in exciton-polariton condensates. Phys. Rev. B 83, 193305 (2011)

    Article  ADS  Google Scholar 

  45. C. Klingshirn, R. Hauschild, J. Fallert, H. Kalt, Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing. Phys. Rev. B 75, 115203 (2007)

    Article  ADS  Google Scholar 

  46. P. Kinsler, D.M. Whittaker, Linewidth narrowing of polaritons. Phys. Rev. B 54, 4988 (1996)

    Article  ADS  Google Scholar 

  47. V. Savona, C. Piermarocchi, Microcavity polaritons: Homogeneous and inhomogeneous broadening in the strong coupling regime. Phys. Status Solidi A 164, 45 (1997)

    Article  ADS  Google Scholar 

  48. J.J. Baumberg, A. Armitage, M.S. Skolnick, J.S. Roberts, Suppressed polariton scattering in semiconductor microcavities. Phys. Rev. Lett. 81, 661 (1998)

    Article  ADS  Google Scholar 

  49. P. Borri, J.R. Jensen, W. Langbein, J.M. Hvam, Direct evidence of reduced dynamic scattering in the lower polariton of a semiconductor microcavity. Phys. Rev. B 61, R13377 (2000)

    Article  ADS  Google Scholar 

  50. J. Kasprzak, D.D. Solnyshkov, R. André, L.S. Dang, G. Malpuech, Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008)

    Article  ADS  Google Scholar 

  51. L. Sun, S. Sun, H. Dong, W. Xie, M. Richard, L. Zhou, L.S. Dang, X. Shen, Z. Chen, Room temperature one-dimensional polariton condensate in a ZnO microwire (2010). arXiv:1007.4686v1

  52. M. Abbarchi, V. Ardizzone, T. Lecomte, A. Lemaître, I. Sagnes, P. Senellart, J. Bloch, P. Roussignol, J. Tignon, One-dimensional microcavity-based optical parametric oscillator: Generation of balanced twin beams in strong and weak coupling regime. Phys. Rev. B 83, 201310 (2011)

    Article  ADS  Google Scholar 

  53. M. Wouters, Resonant polariton-polariton scattering in semiconductor microcavities. Phys. Rev. B 76, 045319 (2007)

    Article  ADS  Google Scholar 

  54. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  55. A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, M. Richard, From strong to weak coupling regime in a single GaN microwire up to room temperature. New J. Phys. 14, 073004 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

FM, AT, LSD and MR acknowledge financial support by the ERC starting grant No. 258608.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Richard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Médard, F., Trichet, A., Chen, Z., Dang, L.S., Richard, M. (2013). Toward Room Temperature One-Dimensional Quantum Fluid in the Solid State: Exciton Polaritons in Zinc Oxide Microwires. In: Bramati, A., Modugno, M. (eds) Physics of Quantum Fluids. Springer Series in Solid-State Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37569-9_11

Download citation

Publish with us

Policies and ethics