Skip to main content

Nanoparticle and Protein Corona

  • Chapter
  • First Online:
Protein-Nanoparticle Interactions

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 15))

Abstract

Nanoparticles and other nanomaterials are increasingly considered for use in biomedical applications such as imaging, drug delivery, and hyperthermic therapies. Thus, understanding the interaction of nanomaterials with biological systems becomes key for their safe and efficient application. It is increasingly being accepted that the surface of nanomaterials would be covered by protein corona upon their entrance to the biological medium. The biological medium will then see the achieved modified surface of nanomaterials, and therefore further cellular/tissue responses depend on the composition of corona. In this chapter, we describe the corona variations according to the physicochemical properties of nanomaterials (e.g., size, shape, surface charge, surface functional groups, and hydrophilicity/hydrophobicity). Besides the nanomaterials’ effects, the role of environment factors, such as protein source and slight temperature variations, is discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  PubMed  CAS  Google Scholar 

  2. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  PubMed  CAS  Google Scholar 

  3. Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933

    Article  PubMed  CAS  Google Scholar 

  4. Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular-weight kininogen, factor-Xii, and fibrinogen in plasma at interfaces. Blood 55:156–159

    PubMed  CAS  Google Scholar 

  5. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  PubMed  CAS  Google Scholar 

  6. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  PubMed  CAS  Google Scholar 

  7. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  8. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    Article  PubMed  CAS  Google Scholar 

  9. Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8:343–357

    Article  PubMed  CAS  Google Scholar 

  10. Gessner A, Waicz R, Lieske A, Paulke BR, Mäder K, Müller RH (2000) Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–249

    Article  PubMed  CAS  Google Scholar 

  11. Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509

    Article  PubMed  CAS  Google Scholar 

  12. Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  PubMed  Google Scholar 

  13. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5:106–117

    Article  PubMed  CAS  Google Scholar 

  14. Slack SM, Horbett TA (1995) The Vroman effect. ACS Symp Ser 602:112–128

    Article  CAS  Google Scholar 

  15. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    Article  PubMed  CAS  Google Scholar 

  16. Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    Article  PubMed  Google Scholar 

  17. Goppert TM, Muller RH (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186

    Article  PubMed  CAS  Google Scholar 

  18. Jansch M, Stumpf P, Graf C, Ruhl E, Muller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428:125–133

    Article  PubMed  CAS  Google Scholar 

  19. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein − nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  PubMed  CAS  Google Scholar 

  20. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632

    Article  PubMed  CAS  Google Scholar 

  21. Gessner A, Lieske A, Paulke BR, Müller RH (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54:165–170

    Article  PubMed  CAS  Google Scholar 

  22. Bradley AJ, Devine DV, Ansell SM, Janzen J, Brooks DE (1998) Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids. Arch Biochem Biophys 357:185–194

    Article  PubMed  CAS  Google Scholar 

  23. Oku N, Tokudome Y, Namba Y, Saito N, Endo M, Hasegawa Y, Kawai M, Tsukada H, Okada S (1996) Effect of serum protein binding on real-time trafficking of liposomes with different charges analyzed by positron emission tomography. Biochim Biophys Acta 1280:149–154

    Article  PubMed  Google Scholar 

  24. Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101

    Article  PubMed  Google Scholar 

  25. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920

    Article  PubMed  CAS  Google Scholar 

  26. Moghimi SM, Patel HM (1988) Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett 233:143–147

    Article  PubMed  CAS  Google Scholar 

  27. Semple SC, Chonn A, Cullis PR (1998) Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv Drug Deliv Rev 32:3–17

    Article  PubMed  CAS  Google Scholar 

  28. De M, You CC, Srivastava S, Rotello VM (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129:10747–10753

    Article  PubMed  CAS  Google Scholar 

  29. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491

    Article  PubMed  CAS  Google Scholar 

  30. Petersdorf RG (1974) Chills and fever. In: Wilson JD, Braunwald E, Isselbacher KJ et al (eds) Harrison’s principles of internal medicine, 12th edn. McGraw-Hill, New York

    Google Scholar 

  31. Hasday JD, Singh IS (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5:471–480

    Article  PubMed  CAS  Google Scholar 

  32. Mahmoudi M, Dutz S, Behzadi S, Ejtehadi MR, Rezaie M, Shokrgozar MA, Moghadam MK, Serpooshan V, Metzler S, Ruiz-Lozano P, Clement J, Maffre P, Nienhaus GU, Pfeiffer C, Ahmed AMA, Linne U, Parak WJ (2013) Temperature – the ignored factor at the NanoBio Interface. ACS Nano (Under Revision)

    Google Scholar 

  33. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580

    Article  PubMed  Google Scholar 

  34. Mahmoudi M, Lohse S, Murphy CJ, Suslick KS (2013) Variation of protein corona composition following plasmonic heating of gold nanoparticles. Nano Lett (in press)

    Google Scholar 

  35. Ghavami M, Saffar S, Abd Emamy B, Peirovi A, Shokrgozar MA, Serpooshan V, Mahmoudi M (2013) Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 3:1119–1126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahman, M., Laurent, S., Tawil, N., Yahia, L., Mahmoudi, M. (2013). Nanoparticle and Protein Corona. In: Protein-Nanoparticle Interactions. Springer Series in Biophysics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37555-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37555-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37554-5

  • Online ISBN: 978-3-642-37555-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics