Skip to main content

The Biological Significance of “Nano”-interactions

  • Chapter
  • First Online:

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 15))

Abstract

In the recent decade, the fabrication of nanoparticles and exploration of their properties have attracted the attention of all branches of science such as physicists, chemists, biologists, engineers, and even medical doctors. Interests for nanoparticles arise from the fact that their mechanical, chemical, electrical, optical, magnetic, electro-optical, and magneto-optical properties of these nanoparticles are completely different from their bulk properties and the predetermined differences are depended on the physicochemical properties of the nanoparticles. There are numerous areas where nanoparticles are of scientific and technological interest, specifically for medical community, where the synthetic and biologic worlds come together and lead to an important concern for design of safe nano-biomaterials. In this chapter, we review and discuss the major biomedical applications of nanoparticles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berube D, Bormand PJA (2008) A tale of opportunities, uncertainties and risks. Nanotoday 3:56–59

    Article  Google Scholar 

  2. Roco MC, Harthorn B, Guston D, Shapira P (2011) Innovative and responsible governance of nanotechnology for societal development. J Nanopart Res 13:3557–3590

    Article  Google Scholar 

  3. Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13:897–919

    Article  Google Scholar 

  4. Roco MC (2011) Nanotechnology: from discovery to innovation and socioeconomic projects. Chem Eng Prog 107:21–27

    CAS  Google Scholar 

  5. Canadian Institute of Health Research (2011) Important funding for nanomedicine research to improve diagnosis and treatment, vol 2011. Canadian Institute of Health Research, Ottawa

    Google Scholar 

  6. Comeau AM, Bertrand C, Letarov A, Tetart F, Krisch HM (2007) Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery. Virology 362:384–396

    Article  PubMed  CAS  Google Scholar 

  7. Juanola-Feliu E, Colomer-Farrarons J, Miribel-Catala P, Samitier J, Valls-Pasola J (2012) Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis. Technovation 32:193–204

    Article  Google Scholar 

  8. Shapira P, Wang J (2010) Follow the money. Nature 468:627–628

    Article  PubMed  CAS  Google Scholar 

  9. Clavijo-Jordan V, Kodibagkar VD, Beeman SC, Hann BD, Bennett KM (2012) Principles and emerging applications of nanomagnetic materials in medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:345–365

    Article  PubMed  CAS  Google Scholar 

  10. Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM (2011) Nanoparticle-based monitoring of cell therapy. Nanotechnology 22:494001

    Article  PubMed  Google Scholar 

  11. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664

    Article  PubMed  CAS  Google Scholar 

  12. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422

    Article  PubMed  CAS  Google Scholar 

  13. Rogers WJ, Meyer CH, Kramer CM (2006) Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3:554–562

    Article  PubMed  CAS  Google Scholar 

  14. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18:829–834

    Article  PubMed  CAS  Google Scholar 

  15. Jin Y, Jia C, Huang SW, O’Donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41

    Article  PubMed  Google Scholar 

  16. Tawil N, Sacher E, Mandeville R, Meunier M (2012) Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron 37:24–29

    Article  PubMed  CAS  Google Scholar 

  17. Scheinberg DA, Villa CH, Escorcia FE, McDevitt MR (2010) Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat Rev Clin Oncol 7:266–276

    Article  PubMed  CAS  Google Scholar 

  18. Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S, Pouponneau P, Yahia L, Beaudoin G, Soulez G, Mankiewicz M (2007) Medical and technical protocol for automatic navigation of a wireless device in the carotid artery of a living swine using a standard clinical MRI system. In: Ayache N, Ourselin S, Maeder A (eds) Medical image computing and computer-assisted intervention – MICCAI 2007, Pt 1, Proceedings, vol 4791, 29 October to 2 November, Brisbane, Australia, pp 144–152

    Google Scholar 

  19. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  PubMed  CAS  Google Scholar 

  20. Polizu S, Maugey M, Poulin S, Poulin P, Yahia L (2006) Nanoscale surface of carbon nanotube fibers for medical applications: structure and chemistry revealed by TOF-SIMS analysis. Appl Surf Sci 252:6750–6753

    Article  CAS  Google Scholar 

  21. Polizu S, Savadogo O, Poulin P, Yahia L (2006) Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 6:1883–1904

    Article  PubMed  CAS  Google Scholar 

  22. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    Article  PubMed  CAS  Google Scholar 

  23. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393

    Article  PubMed  CAS  Google Scholar 

  24. He G, Eckert J, Loser W, Schultz L (2003) Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater 2:33–37

    Article  PubMed  CAS  Google Scholar 

  25. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  PubMed  CAS  Google Scholar 

  26. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276

    Article  PubMed  CAS  Google Scholar 

  27. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  PubMed  CAS  Google Scholar 

  28. Tao NJ (2006) Electron transport in molecular junctions. Nat Nanotechnol 1:173–181

    Article  PubMed  CAS  Google Scholar 

  29. Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–427

    Article  PubMed  CAS  Google Scholar 

  30. Pickup JC (2012) Management of diabetes mellitus: is the pump mightier than the pen? Nat Rev Endocrinol 8:425–433

    Article  PubMed  CAS  Google Scholar 

  31. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703

    Article  PubMed  CAS  Google Scholar 

  32. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–92

    Article  PubMed  CAS  Google Scholar 

  33. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593

    Article  PubMed  CAS  Google Scholar 

  34. Receveur RAM, Lindemans FW, de Rooij NF (2007) Microsystem technologies for implantable applications. J Micromech Microeng 17:R50–R80

    Article  Google Scholar 

  35. Wu CS, Khaing Oo MK, Fan X (2010) Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4:5897–5904

    Article  PubMed  CAS  Google Scholar 

  36. Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3:434–439

    Article  PubMed  CAS  Google Scholar 

  37. El-Hosseiny A, Genaidy A, Shell R, Stambough JL, Dimov M (2008) Multinetwork nanobiosensing: potential approaches in understanding, diagnosing, and tracking discogenic pain. Human Factors Ergon Manuf 18:374–390

    Article  Google Scholar 

  38. Ryu WH, Vyakarnam M, Greco RS, Prinz FB, Fasching RJ (2007) Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers. Biomed Microdev 9:845–853

    Article  CAS  Google Scholar 

  39. Qiu HJ, Li L, Lang QL, Zou FX, Huang XR (2012) Aligned nanoporous PtNi nanorod-like structures for electrocatalysis and biosensing. RSC Adv 2:3548–3554

    Article  CAS  Google Scholar 

  40. Qiu H, Zou F (2012) Fabrication of stratified nanoporous gold for enhanced biosensing. Biosens Bioelectron 35:349–354

    Article  PubMed  CAS  Google Scholar 

  41. Kauffman DR, Shade CM, Uh H, Petoud S, Star A (2009) Decorated carbon nanotubes with unique oxygen sensitivity. Nat Chem 1:500–506

    Article  PubMed  CAS  Google Scholar 

  42. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    Article  PubMed  CAS  Google Scholar 

  43. Zijlstra P, Paulo PM, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7:379–382

    Article  PubMed  CAS  Google Scholar 

  44. Xie P, Xiong Q, Fang Y, Qing Q, Lieber CM (2012) Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat Nanotechnol 7:119–125

    Article  CAS  Google Scholar 

  45. Scarpa G, Idzko AL, Yadav A, Martin E, Thalhammer S (2010) Toward cheap disposable sensing devices for biological assays. IEEE Trans Nanotechnol 9:527–532

    Article  Google Scholar 

  46. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  47. Bondavalli P, Legagneux P, Pribat D (2009) Carbon nanotubes based transistors as gas sensors: state of the art and critical review. Sens Actuator B-Chem 140:304–318

    Article  CAS  Google Scholar 

  48. Vichchulada P, Lipscomb LD, Zhang QH, Lay MD (2009) Incorporation of single-walled carbon nanotubes into functional sensor applications. J Nanosci Nanotechnol 9:2189–2200

    Article  PubMed  CAS  Google Scholar 

  49. Cho SH, Chang WS, Kim KR, Hong JW (2009) Measurement of UV absorption of single living cell for cell manipulation using NIR femtosecond laser. Appl Surf Sci 255:4974–4978

    Article  CAS  Google Scholar 

  50. Ronchi P, Terjung S, Pepperkok R (2012) At the cutting edge: applications and perspectives of laser nanosurgery in cell biology. Biol Chem 393:235–248

    Article  PubMed  CAS  Google Scholar 

  51. Winkler MT, Sher MJ, Lin YT, Smith MJ, Zhang HF, Gradecak S, Mazur E (2012) Studying femtosecond-laser hyperdoping by controlling surface morphology. J Appl Phys 111:093511

    Article  Google Scholar 

  52. Watanabe W, Matsunaga S, Higashi T, Fukui K, Itoh K (2008) In vivo manipulation of fluorescently labeled organelles in living cells by multiphoton excitation. J Biomed Opt 13:031213

    Article  PubMed  Google Scholar 

  53. Brugues J, Nuzzo V, Mazur E, Needleman DJ (2012) Nucleation and transport organize microtubules in metaphase spindles. Cell 149:554–564

    Article  PubMed  CAS  Google Scholar 

  54. Reich U, Fadeeva E, Warnecke A, Paasche G, Muller P, Chichkov B, Stover T, Lenarz T, Reuter G (2012) Directing neuronal cell growth on implant material surfaces by microstructuring. J Biomed Mater Res Part B Appl Biomater 100:940–947

    Article  PubMed  Google Scholar 

  55. Baumgart J, Humbert L, Boulais E, Lachaine R, Lebrun JJ, Meunier M (2012) Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells. Biomaterials 33:2345–2350

    Article  PubMed  CAS  Google Scholar 

  56. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Article  PubMed  CAS  Google Scholar 

  57. Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo P (2009) Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nanotechnol 4:765–772

    Article  PubMed  CAS  Google Scholar 

  58. Baraban L, Makarov D, Streubel R, Monch I, Grimm D, Sanchez S, Schmidt OG (2012) Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6:3383–3389

    Article  PubMed  CAS  Google Scholar 

  59. Gao W, Sattayasamitsathit S, Wang J (2012) Catalytically propelled micro-/nanomotors: how fast can they move? Chem Rec 12:224–231

    Article  PubMed  CAS  Google Scholar 

  60. Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) Self-propelled nanotools. ACS Nano 6:1751–1756

    Article  PubMed  CAS  Google Scholar 

  61. Pumera M (2010) Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2:1643–1649

    Article  PubMed  CAS  Google Scholar 

  62. Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338–345

    Article  PubMed  CAS  Google Scholar 

  63. Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005) A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron 20:2120–2125

    Article  PubMed  CAS  Google Scholar 

  64. Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005) Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 5:27–30

    Article  PubMed  CAS  Google Scholar 

  65. Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA 104:8218–8222

    Article  PubMed  CAS  Google Scholar 

  66. Singhal R, Orynbayeva Z, Kalyana Sundaram RV, Niu JJ, Bhattacharyya S, Vitol EA, Schrlau MG, Papazoglou ES, Friedman G, Gogotsi Y (2011) Multifunctional carbon-nanotube cellular endoscopes. Nat Nanotechnol 6:57–64

    Article  PubMed  CAS  Google Scholar 

  67. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  PubMed  CAS  Google Scholar 

  68. Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682–692

    Article  PubMed  CAS  Google Scholar 

  69. Grafahrend D, Heffels KH, Beer MV, Gasteier P, Moller M, Boehm G, Dalton PD, Groll J (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10:67–73

    Article  PubMed  CAS  Google Scholar 

  70. Amir-Aslani A, Mangematin V (2010) The future of drug discovery and development: shifting emphasis towards personalized medicine. Technol Forecast Soc Change 77:203–217

    Article  Google Scholar 

  71. Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28:571–582

    Article  Google Scholar 

  72. Zderic V, Clark JI, Martin RW, Vaezy S (2004) Ultrasound-enhanced transcorneal drug delivery. Cornea 23:804–811

    Article  PubMed  Google Scholar 

  73. Yanga W, Peters JI, Williams RO III (2008) Inhaled nanoparticles—a current review. Int J Pharm 356:239–247

    Article  Google Scholar 

  74. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  PubMed  CAS  Google Scholar 

  75. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    Article  PubMed  CAS  Google Scholar 

  76. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  PubMed  CAS  Google Scholar 

  77. Kuna JJ, Voitchovsky K, Singh C, Jiang H, Mwenifumbo S, Ghorai PK, Stevens MM, Glotzer SC, Stellacci F (2009) The effect of nanometre-scale structure on interfacial energy. Nat Mater 8:837–842

    Article  PubMed  CAS  Google Scholar 

  78. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    Article  PubMed  CAS  Google Scholar 

  79. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nanotoday 3:40–47

    Article  CAS  Google Scholar 

  80. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  81. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  PubMed  CAS  Google Scholar 

  82. Chellata F, Merhi Y, Moreau A, Yahia LH (2005) Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 26:7260–7275

    Article  Google Scholar 

  83. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  PubMed  CAS  Google Scholar 

  84. Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128

    Article  PubMed  CAS  Google Scholar 

  85. Mbeh DA, Franca R, Merhi Y, Zhang XF, Veres T, Sacher E, Yahia L (2012) In vitro biocompatibility assessment of functionalized magnetite nanoparticles: biological and cytotoxicological effects. J Biomed Mater Res Part A 100:1637–1646

    Article  CAS  Google Scholar 

  86. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622

    Article  PubMed  CAS  Google Scholar 

  87. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699

    Article  PubMed  CAS  Google Scholar 

  88. Huang YW, Wu CH, Aronstam RS (2010) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3:4842–4859

    Article  CAS  Google Scholar 

  89. Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–246

    Article  PubMed  CAS  Google Scholar 

  90. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–568

    Article  PubMed  CAS  Google Scholar 

  91. Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahman, M., Laurent, S., Tawil, N., Yahia, L., Mahmoudi, M. (2013). The Biological Significance of “Nano”-interactions. In: Protein-Nanoparticle Interactions. Springer Series in Biophysics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37555-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37555-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37554-5

  • Online ISBN: 978-3-642-37555-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics