Skip to main content

Surface Tension Driven Actuation

  • Chapter
  • First Online:
Surface Tension in Microsystems

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 2439 Accesses

Abstract

The ability of plants to extract work from evaporation is the inspiration behind all of the work in this chapter. Transpiration mechanisms are explored as a method for driving mechanical and electrical energy conversion. We present two types of energy scavenging devices that were inspired by nature, and specifically, by different transpiration mechanisms used in plants. The first type of device consists of a new class of mechanical actuators that operate via the evaporation of water. The second type of device uses evaporation-driven flow to generate electrical power using a charge-pumping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bubbles were generated using an input stream of dry air introduced into a liquid channel at a T-junction so as to create air bubbles interspersed with water.

  2. 2.

    \(f=v/x=1.5\, \mathrm c\mathrm m\mathrm s^{-1}/0.3\, \mathrm c\mathrm m\).

References

  1. Y. Bar-Cohen, Biomimetics - using nature to inspire human innovation. Biosinspiration Biomimetics 1, 1 (2006)

    Google Scholar 

  2. O.H. Schmitt, Some interesting and useful biomimetic transforms, in Proceedings of the 3rd International Biophysics Congress, Boston (MA), 1969

    Google Scholar 

  3. B. Bhushan, Y.C. Yung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)

    Article  Google Scholar 

  4. V. Namasivayam, R.G. Larson, D.T. Burke, M.A. Burns, Transpiration-based micropump for delivering continuous ultra-low flow rates. J. Micromech. Microeng. 13, 261 (2003)

    Article  Google Scholar 

  5. T. Vestad, D.W.M. Marr, J. Oakey, Flow control for capillary-pumped microfluidic systems. J. Micromech. Microeng. 14, 1503 (2004)

    Article  Google Scholar 

  6. J.M. Walker, D.J. Beebe, An evaporation-based microfluidic sample concentration method. Lab Chip 2, 57–61 (2002)

    Article  Google Scholar 

  7. N. Goedecke, J. Eijkel, A. Manz, Evaporation driven pumping for chromatography application. Lab Chip 2, 219–223 (2002)

    Article  Google Scholar 

  8. R.O. Slatyer, Movement of water in the vascular system, in Plant-Water Relationships (Academic Press, New-York, 1967) pp. 211–215

    Google Scholar 

  9. J. Sutcliffe, Mechanisms of water movement, in Plant-Water Relationships vol 14, The Institute of Biology’s Studies in Biology. (Edward Arnold (Publishers) Ltd, London, 1968) pp. 72–76

    Google Scholar 

  10. D.H. Trevena, Cavitation and Tension in Liquids (Adam Hilger, Philadelphia, 1987)

    Google Scholar 

  11. M.T. Tyree, M.H. Zimmerman, Xylem Structure and the Ascent of Sap (Springer, New York, 2002)

    Book  Google Scholar 

  12. R.T. Borno, J.D. Steinmeyer, M.M. Maharbiz, Transpiration actuation: the design, fabrication and characterization of biomimetic microactuators driven by the surface tension of water. J. Micromech. Microeng. 16, 2375–2383 (2006)

    Article  Google Scholar 

  13. V. Raghavan, Developmental Biology of Fern Gametophytes (Cambridge University Press, New York, 1989)

    Book  Google Scholar 

  14. K. Haider, Zur Morpholegie und Physciologie der Sporangien leptosporangiater Farne. Planta 44, 370–411 (1954)

    Article  Google Scholar 

  15. E. Steudle, Acquisition of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001)

    Google Scholar 

  16. E. Chanliaud, K. Burrows, G. Jeronimidis, M. Gidley, Mechanical properties of primary plant cell wall analogues. Planta 215, 989–996 (2002)

    Article  Google Scholar 

  17. R.R.A. Syms, E.M. Yeatman, V.M. Bright, G.M. Whitesides, Surface tension-powered self assembly of microstructures—the state-of-the-art. J. Microelectromech. Syst. 12, 387 (2003)

    Article  Google Scholar 

  18. P.W. Green, R.R.A. Syms, E.M. Yeatman, Demonstration of three-dimensional microstructure self-assembly. J. Microelectromech. Syst. 4, 170 (1995)

    Article  Google Scholar 

  19. M. Boncheva, G.M. Whitesides, Templated self-assembly: formation of folded structures by relaxation of pre-stressed, planar tapes. Adv. Mater. 17, 553 (2005)

    Article  Google Scholar 

  20. D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Forming electrical networks in three dimensions by self-assembly. Science 289, 1170 (2000)

    Article  Google Scholar 

  21. S.D. Senturia, Microsystem Design (Kluwer, Boston, 2000), pp. 240–244

    Google Scholar 

  22. J.W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, 5th ed. (Wiley, New York, 1990), pp. 518–520

    Google Scholar 

  23. D.L. Bower, An Introduction to Polymer Physics (Cambridge University Press, New York, 2002), pp. 164–176

    Google Scholar 

  24. C.E. Maneschy, M. Massoudi, V.R. Velloso, Dynamic elastic solutions in neo-Hookean and Mooney-Rivlin materials. Int. J. Non-Linear Mech. 28, 531 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.M. Gere, in Bending Stresses in Beams in The Engineering Handbook, ed. by R.C. Dorf (CRC Press, Inc., Boca Raton, FL, 1996), pp. 52–59

    Google Scholar 

  26. S. Goyal, N.C. Perkins, C.L. Lee, Nonlinear dynamics and loop formation in Kirchoff rods with implications to the mechanics of DNA and cables. J. Comput. Phys. 209, 371–389 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Maboudian, R.T. Howe, Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 15, 1 (1997)

    Article  Google Scholar 

  28. J.S. Sperry, Evolution of water transport and xylem structure. Int. J. Plant Sci. 163, 115–127 (2003)

    Article  Google Scholar 

  29. J.C.T. Eijkel, A.v.d. Berg, Water in micro- and nanofluidics systems described using the water potential. Lab Chip 5, 1202–1209 (2005)

    Google Scholar 

  30. M.J. Canny, The transpiration stream in the leaf apoplast: water and solutes. Philos. Trans. Biol. Sci. 341, 87–100 (1993)

    Article  Google Scholar 

  31. R.T. Borno, J.D. Steinmeyer, M.M. Maharbiz, Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows. Appl. Phys. Lett. 95(1), 013705 (2009)

    Google Scholar 

  32. P. Gravesen, J. Branebjerg, O.S. Jensen, Microfluidics-a review. J. Micromech. Microeng. 3, 168 (1993)

    Article  Google Scholar 

  33. K. Yasuoka, M. Matsumoto, Y. Kataoka, Evaporation and condensation at a liquid surface. I. Argon. J. Chem. Phys. 101(9), 7904–7911 (1994)

    Article  Google Scholar 

  34. C.A. Ward, G. Fang, Expression for predicting liquid evaporation flux: statistical rate theory approach. Phys. Rev. E 59(1), 429–440 (1999)

    Article  Google Scholar 

  35. K. Hisatake, M. Fukuda, J. Kimura, M. Maeda, Y. Fukuda, Experimental and theoretical study of evaporation of water in a vessel. J. Appl. Phys. 77(12), 6664–6674 (1995)

    Article  Google Scholar 

  36. S. Roundy, Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Ph.D. Dissertation, University of California-Berkeley, 2003

    Google Scholar 

  37. C. Carnero, J. Carretero, A study on the physical behaviour of a dielectric slab inserted into a parallel-plate capacitor. Eur. J. Phys. 17, 220–225 (1996)

    Article  Google Scholar 

  38. J.O’M. Bockris, A.K.N. Reddy, Modern Electrochemistry (Plenum, New York, 1970)

    Google Scholar 

  39. L. Mateu, F. Moll, Review of energy harvesting techniques and applications for microelectronics, in Proceedings of the SPIE Microtechnologies for the New Millenium, Sevilla, Spain, pp. 359–373, 2005

    Google Scholar 

  40. K.A. McCulloh, J.S. Sperry, F.R. Adler, Water transport in plants obeys Murray’s Law. Nature 27, 939–942 (2003)

    Article  Google Scholar 

  41. A. Host-Madsen, J. Zhang, Capacity bounds and power allocation for wireless relay channels. IEEE Trans. Inf. Theory 51, 2020–2040 (2005)

    Article  MathSciNet  Google Scholar 

  42. X. Cheng, B. Narahari, R. Simha, M.X. Cheng, D. Liu, Strong minimum energy topology in wireless sensor networks: NP-completeness and heuristics. IEEE Trans. Mob. Comput. 2(3), 248–256 (2003)

    Article  Google Scholar 

  43. M. Helmer, Biomaterials: dew catchers. Nature, 463(7281), 618 (2010)

    Google Scholar 

  44. R.P. Garrod, L.G. Harris, W.C. Schofield, J. McGettrick, L.J. Ward, D.O. Teare, J.P. Badyal, Mimicking a Stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir 23(2), 689–693 (2007)

    Article  Google Scholar 

  45. A. Ursprung, Über die Kohäsion des Wasser in Farnannulus. Berichte der Deutsch Botanischen Gesellschaft 33, 152–162 (1915)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel M. Maharbiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borno, R.T., Maharbiz, M.M. (2013). Surface Tension Driven Actuation. In: Lambert, P. (eds) Surface Tension in Microsystems. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37552-1_13

Download citation

Publish with us

Policies and ethics