Skip to main content

Capillary Micro Motor

  • Chapter
  • First Online:
Surface Tension in Microsystems

Part of the book series: Microtechnology and MEMS ((MEMS))

Abstract

A micro structure supported on a droplet is subjected to capillary force and aligned depending on its shape as we explained in Chap. 4. If the droplet’s boundary condition at the bottom and the micro structure are non-circular, a capillary torque is exerted on the structures. The direction of the torque is determined by the boundary condition and the position of the structure. By changing the boundary condition continuously, the rotational motion of the plate was achieved. The boundary condition of the droplet was controlled by electrowetting. We patterned electrodes in annular shape on the plate supporting the droplet. By changing the voltage-applied electrodes, the boundary condition is changed and the plate is rotated. With this method, the droplet and the plate work as a capillary motor. In this chapter, we describe the relationship between the characteristics of the capillary motor and its rotational motion. We sandwiched \(3.0\,{\upmu }\mathrm L\) water droplet between 2 mm plate and achieved the rotational motion of 720 rpm at the maximum (Content of this chapter, including all pictures and tables, originally published in [21] \(\copyright \) 2010 Royal Society of Chemistry (available at: http://pubs.rsc.org/en/Content/ArticleLanding/2010/LC/c001211d). Presented hereby in revised form with permission of The Royal Society of Chemistry).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Song, N.T. Nguyen, S.H. Tan, A.K. Asundi, Lab Chip 9, 1178 (2009)

    Google Scholar 

  2. X. Mao, S.C.S. Lin, M.I. Lapsley, J. Shi, B.K. Juluri, T.J. Huang, Lab Chip 9, 2050 (2009)

    Google Scholar 

  3. L. Hou, N.R. Smith, J. Heikenfeld, Appl. Phys. Lett. 90, 25114 (2007)

    Google Scholar 

  4. A. Takei, E. Iwase, K. Matsumoto, I. Shimoyama, J. Microelectromech. Syst. 90, 1537 (2007)

    Google Scholar 

  5. Y.C. Tai, R.S. Muller, Sens. Actuators, A 21, 180 (1990)

    Google Scholar 

  6. X. Xiong, Y. Hanein, J. Fang, W. Wang, D. Schwarz, K. Böhringer, J. Micromech. Microeng. 16, 721 (2006)

    Google Scholar 

  7. J. Fang, K. Böhringer, J. Microelectromech. Syst. 16, 721 (2006)

    Google Scholar 

  8. U. Srinivasan, D. Liepmann, R.T. Howe, J. Microelectromech. Syst. 10, 17 (2001)

    Google Scholar 

  9. B. Berge, J. Peseux, Eur. Phys. J. E 3, 159 (2000)

    Google Scholar 

  10. S.-K. Fan, H. Yang, T.-T. Wang, W. Hsu, Lab Chip 7, 1330 (2007)

    Google Scholar 

  11. S.K. Cho, H. Moon, C.-J. Kim, J. Microelectromech. Syst. 1, 70 (2003)

    Google Scholar 

  12. M.A. Burns, Phys. Rev. Lett., Proc. Natl. Acad. Sci. U. S. A. 93, 5556 (1996)

    Google Scholar 

  13. O. Sandre, L. Gorre-Talini, A. Ajdari, J. Prost, P. Silberzen, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. 60, 2964 (1999)

    Google Scholar 

  14. R.B.M. Schasfoort, S. Schlautmann, J. Hendrikse, A. van den Berg, Science 286, 942 (1999)

    Google Scholar 

  15. H.-W. Lu, F. Bottausci, J.D. Fowler, A.L. Bertozzi, C. Meinhart, C.-J. Kim, Lab Chip 8, 456 (2008)

    Google Scholar 

  16. P. Paik, V.K. Pamula, R.B. Fair, Lab Chip 3, 253 (2003)

    Google Scholar 

  17. P. Sen, C.J. Kim, Langmuir 25, 4302 (2009)

    Google Scholar 

  18. S.H. Ko, H. Lee, K.H. Kang, Langmuir 24, 1094 (2008)

    Google Scholar 

  19. J.M. Oh, S.H. Ko, K.H. Kang, Langmuir 24, 8379 (2008)

    Google Scholar 

  20. J. Lee, C.J. Kim, J. Microelectromech. Syst. 9, 469 (2000)

    Google Scholar 

  21. A. Takei, K. Matsumoto, I. Shimoyama, Lab Chip 10, 1781 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takei, A. (2013). Capillary Micro Motor. In: Lambert, P. (eds) Surface Tension in Microsystems. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37552-1_10

Download citation

Publish with us

Policies and ethics