Skip to main content

Nanostructuring and Porosity in Anisotropic Thermoelectric Materials Prepared by Bottom-Up Processing

  • Chapter
  • First Online:
Book cover Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

Nanostructuring has allowed for enhancement in the thermoelectric properties of materials as compared to that of the bulk. The presence of nano-scale inclusions or grains within a bulk matrix seems to be beneficial in certain cases. In addition, texturing and porosity in nanostructured thermoelectric materials are also important factors, and can directly affect the thermoelectric properties. Bottom-up processing allows for control of particle size and yield, as well as the quality of the nanocrystals, while densification by spark plasma sintering preserves the nano-inclusions within the dense bulk material without significant grain growth. Optimization of the synthesis as well as the densification parameters is therefore critical in obtaining dense materials. Materials with anisotropic crystal structures have additional challenges due to the possibility of grain alignment during densification, and the associated effects on the physical properties of the material. An understanding of these effects on the properties of state-of-art thermoelectric materials offers a platform for expanding the investigation into fundamental structural and transport properties of other material systems that have potential for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001)

    Book  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008)

    Article  Google Scholar 

  3. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  4. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010)

    Article  Google Scholar 

  5. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)

    Article  Google Scholar 

  6. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009)

    Article  Google Scholar 

  7. A. Datta, A. Popescu, L. Woods, G.S. Nolas, The bottom-up approach to bulk thermoelectric materials with nano-scale domains, in CRC Handbook on Thermoelectrics and Its Energy Harvesting on Materials, Preparation and Characterization Chap. 14, ed. by D.M. Rowe, Taylor & Francis, F.L. Boca Raton (2012) and references therein

    Google Scholar 

  8. J.P. Heremans, C.M. Thrush, D.T. Morelli, J. Appl. Phys. 98, 063703 (2005)

    Article  Google Scholar 

  9. J.Q. He, J.R. Sootsman, S.N. Girard, J.C. Zheng, J.G. Wen, Y.M. Zhu, M.G. Kanatzidis, V.P. Dravid, J. Amer. Chem. Soc. 132, 8669 (2010)

    Article  Google Scholar 

  10. J. Martin, G.S. Nolas, W. Zhang, L. Chen, Appl. Phys. Lett. 99, 222112 (2007)

    Google Scholar 

  11. J. Martin, L. Wang, L. Chen, G.S. Nolas, Phys. Rev. B 79, 115311 (2009)

    Article  Google Scholar 

  12. A. Popescu, L.M. Woods, J. Martin, G.S. Nolas, Phy. Rev. B 79, 205302 (2009)

    Article  Google Scholar 

  13. A. Datta, J. Paul, A. Kar, A. Patra, Z. Sun, L. Chen, J. Martin, G.S. Nolas, Cryst. Growth Des. 10, 3983 (2010)

    Article  Google Scholar 

  14. A. Datta, G.S. Nolas, Eur. J. Inorg. Chem. 2012, 55 (2012)

    Article  Google Scholar 

  15. A. Datta, G.S. Nolas, ACS Appl. Mater. Inter. 4, 772 (2012)

    Article  Google Scholar 

  16. N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, A. Shakouri, Nano Lett. 9, 711 (2009)

    Article  Google Scholar 

  17. G. Chen, G.H. Zhu, H. Lee, Y.C. Lan, X.W. Wang, G. Joshi, D.Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M.S. Dresselhaus, Z.F. Ren, Phys. Rev. Lett. 102, 196803 (2009)

    Google Scholar 

  18. Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9, 1419 (2009)

    Article  Google Scholar 

  19. D. Yonatan, D.V. Massimiliano, Nano Lett. 9, 97 (2009)

    Article  Google Scholar 

  20. X. Ji, B. Zhang, Z. Su, T. Holgate, J. He, T.M. Tritt, Phys. Status solidi A 206, 221 (2009)

    Article  Google Scholar 

  21. W. Zhou, J. Zhu, D. Li, H.H. Hng, F.Y.C. Boey, J. Ma, H. Zhang, Q.Y. Christopher, Adv. Mater. 21, 3196 (2009)

    Article  Google Scholar 

  22. B. Paul, P. Banerji, Nanosci. Nanotechnol. Lett. 1, 208 (2009)

    Article  Google Scholar 

  23. J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  24. M. Scheele, N. Oeschler, I. Veremchuk, S.-O. Peters, A. Littig, A. Kornowski, C. Klinke, H. Weller, ACS Nano 5, 8541 (2011)

    Article  Google Scholar 

  25. Y. Zhang, H. Wang, S. Kräemer, Y. Shi, F. Zhang, M. Snedaker, K. Ding, M. Moskovits, G.J. Snyder, G.D. Stucky, ACS Nano 5, 3158 (2011)

    Article  Google Scholar 

  26. R.J. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca-Tasciuc, G. Ramanath, Nat. Mater. 11, 233 (2012)

    Article  Google Scholar 

  27. L.D. Hicks, M.S. Dresselhaus, Phys. Rev B 47, 12727 (1993)

    Article  Google Scholar 

  28. Y.I. Ravich, D.M. Rowe (eds.), CRC Handbook of Thermoelectrics (CRC Press: New York, 1995), p. 67

    Google Scholar 

  29. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  Google Scholar 

  30. A. Popescu, A. Datta, G.S. Nolas, L.M. Woods, J. Appl. Phys. 109, 103709 (2011)

    Article  Google Scholar 

  31. D.L. Medlin, G. Snyder, J. Curr. Opi. Coll. Inter. Sci. 14, 226 (2009)

    Article  Google Scholar 

  32. S. Zhang, J. He, J. South Carolina Aca. Sci. 6, 14 (2008)

    Google Scholar 

  33. X. Ji, T.M. Tritt, X. Zhao, J.W. Kolis, J. South Carolina Aca. Sci. 6, 1 (2008)

    Google Scholar 

  34. W. Zhou, J. Zhu, D. Li, H.H. Hng, F.Y.C. Boey, J. Ma, H. Zhang, Q. Yan, Adv. Mater. 21, 3196 (2009)

    Article  Google Scholar 

  35. A. Purkayastha, S. Kim, D.D. Gandhi, P.G. Ganesan, T. Borca-Tasciuc, G. Ramanath, Adv. Mater. 18, 2958 (2006)

    Article  Google Scholar 

  36. M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke, H. Weller, Adv. Funct. Mater. 19, 3476 (2009)

    Article  Google Scholar 

  37. Y. Zhao, J.S. Dyck, B.M. Hernandez, C. Burda, J. Am. Chem. Soc. 132, 4982 (2010)

    Article  Google Scholar 

  38. G. Zhang, Q. Yu, X. Li, Dalton Trans. 39, 993 (2010)

    Article  Google Scholar 

  39. A. Soni, Z. Yanyuan, Y. Ligen, M.K.K. Aik, M.S. Dresselhaus, Q. Xiong, Nano Lett. 12, 1203 (2012)

    Article  Google Scholar 

  40. K. Nielsch, J. Bachmann, J. Kimling, H. Böttner, Adv. Energy Mater. 1, 713 (2011)

    Google Scholar 

  41. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    Article  Google Scholar 

  42. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z.F. Ren, Nano Lett. 8, 4670 (2008)

    Article  Google Scholar 

  43. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, Q.J. Zhang, M. Niino, Appl. Phys. Lett. 90, 012102 (2007)

    Article  Google Scholar 

  44. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009)

    Article  Google Scholar 

  45. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, T.M. Tritt, J. Appl. Phys. 105, 113713 (2009)

    Article  Google Scholar 

  46. G.A. Ozin, Adv. Mater. 4, 615 (1992)

    Google Scholar 

  47. Y. Zhao, J.S. Dyck, C. Burda, J. Mater. Chem. 21, 17049 (2011)

    Article  Google Scholar 

  48. M.R. Dirmyer, J. Martin, G.S. Nolas, A. Sen, J.V. Badding, Small 5, 933 (2009)

    Article  Google Scholar 

  49. Y. Zhao, J.S. Dyck, B.M. Hernandez, C. Burda, J. Phys. Chem. C 114, 11607 (2010)

    Google Scholar 

  50. H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, J. Appl. Phys. 107, 094308 (2010)

    Article  Google Scholar 

  51. M. Scheele, N. Oeschler, I. Veremchuk, K.-G. Reinsberg, A.-M. Kreuziger, A. Kornowski, J. Broekaert, C. Klinke, H. Weller, G. Chen, ACS Nano 4, 4283 (2010)

    Article  Google Scholar 

  52. N. Savvides, H.J. Goldsmid, J. Phys. C Solid St. Phys. 13, 4657 (1980)

    Article  Google Scholar 

  53. I. Sumirat, Y. Ando, S. Shimamura, J. Porous Mater. 13, 439 (2006)

    Article  Google Scholar 

  54. F. Brochin, B. Lenoir, X. Devaux, R. Martin-Lopez, H. Scherrer, J. Appl. Phys. 88, 3269 (2000)

    Article  Google Scholar 

  55. J. Adachi, K. Kurosaki, M. Uno, S. Yamanaka, J. Alloys Compd. 432, 7 (2007)

    Article  Google Scholar 

  56. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41, 763 (2006)

    Article  Google Scholar 

  57. Q. Yan, H. Chen, W. Zhou, H.H. Hng, F.Y.C. Boey, J. Ma, Chem. Mater. 20, 6298 (2008)

    Article  Google Scholar 

  58. H. Jung, D.-Y. Park, F. Xiao, K.H. Lee, Y.-H. Choa, B. Yoo, N.V. Myung, J. Phys. Chem. C 115, 2993 (2011)

    Article  Google Scholar 

  59. Y. Xiong, B.J. Wiley, Y. Xia, Angew. Chem. Int. Ed. 46, 7157 (2007)

    Article  Google Scholar 

  60. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Google Scholar 

  61. J. Adachi, M. Katayama, K. Kurosaki, M. Uno, S. Yamanaka, J. Nucl. Mater. 376, 83 (2008)

    Article  Google Scholar 

  62. G.D. Mahan, Recent Trends in Thermoelectric Materials Research III, vol. 71 (Academic Press, San Diego, 2001), pp. 157–174

    Book  Google Scholar 

  63. A.L. Jain, Phys. Rev. 114, 1518 (1959)

    Article  Google Scholar 

  64. S. Golin, Phys. Rev. 176, 830 (1968)

    Article  Google Scholar 

  65. A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, F. Steglich, Eur. Phys. Lett. 80, 17008 (2007)

    Article  Google Scholar 

  66. A. Bentien, G.K.H. Madsen, S. Johnsen, B.B. Iversen, Phys. Rev. B 74, 205105 (2006)

    Article  Google Scholar 

  67. P. Sun, M. Søndergaard, Y. Sun, S. Johnsen, B.B. Iversen, F. Steglich, Appl. Phys. Lett. 98, 072105 (2011)

    Article  Google Scholar 

  68. C. Petrovic, J.W. Kim, S.L. Bud’ko, A.I. Goldman, P.C. Canfield, W. Choe, G. Miller, J. Phys. Rev. B 67, 155205 (2003)

    Article  Google Scholar 

  69. C. Petrovic, Y. Lee, T. Vogt, N.D. Lazarov, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 72, 045103 (2005)

    Google Scholar 

  70. H. Takahashi, R. Okazaki, Y. Yasui, I. Terasaki, Phys. Rev. B 84, 205215 (2011)

    Article  Google Scholar 

  71. M.S. Diakhate, R.P. Hermann, A. Möchel, I. Sergueev, M. Søndergaard, M. Christensen, M. Verstraete, J. Phys. Rev. B 84, 125210 (2011)

    Google Scholar 

  72. H. Takahashi, Y. Yasui, I. Terasaki, M. Sato, J. Phys. Soc. Japan 80, 054708 (2011)

    Article  Google Scholar 

  73. D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C.R. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, Science 287, 1024 (2000)

    Google Scholar 

  74. D.-Y. Chung, T. Hogan, M. Rocci-Lane, P. Brazis, J.R. Ireland, C.R. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 126, 6414 (2004)

    Google Scholar 

  75. K.-F. Hsu, D.-Y. Chung, S. Lal, A. Mrotzek, T. Kyratsi, T. Hogan, M.G. Kanatzidis, J. Am. Chem. Soc. 124, 2410 (2002)

    Article  Google Scholar 

  76. B. Lenoir, H. Scherrer, T. Caillat, in Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, vol. 69, ed. by T.M. Tritt (Academic, San Diego, 2001) Chap. 4, pp. 103–115

    Google Scholar 

  77. H. Holseth, A. Kjekshus, Acta Chem. Scand. 23, 3043 (1969)

    Google Scholar 

  78. A. Datta, G.S. Nolas, Cryst. Eng. Comm. 13, 2753 (2011)

    Article  Google Scholar 

  79. C.F. Gallo, B.S. Chandrasekhar, P.H. Sutter, J. Appl. Phys. 34, 144 (1963)

    Article  Google Scholar 

  80. B. Lenoir, M. Cassax, J.-P. Michenaud, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 57, 89 (1996)

    Article  Google Scholar 

  81. A. Popescu, L.M. Woods, G.S. Nolas, Phys. Rev. B 85, 115202 (2012)

    Google Scholar 

  82. D.-Y. Chung, S.D. Mahanti, W. Chen, C. Uher, M.G. Kanatzidis, Mat. Res. Soc. Symp. Proc. 793, S6.1.1 (2004)

    Google Scholar 

  83. S. Zhu, W. Xie, D. Thompson, T. Holgate, M. Zhou, Y. Yan, T.M. Tritt, J. Mater. Res. 26, 1894 (2011)

    Google Scholar 

  84. H. Zhao, M. Pokharel, G. Zhu, S. Chen, K. Lukas, Q. Jie, C. Opeil, G. Chen, Z.F. Ren, Appl. Phys. Lett. 99, 163101 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the U.S. Army Medical Research and Materiel Command under Grant No. W81XWH-07-1-0708 and the National Science Foundation under Grant Nos. CBET-0932526 and CMMI-0927637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Nolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Datta, A., Nolas, G.S. (2013). Nanostructuring and Porosity in Anisotropic Thermoelectric Materials Prepared by Bottom-Up Processing. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_9

Download citation

Publish with us

Policies and ethics