Skip to main content

Higher Manganese Silicide, \(\mathbf MnSi _{\varvec{\gamma }}\)

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

Higher Manganese Silicides (HMSs), consisting of two naturally abundant elements, show high oxidation resistance at high temperatures. These are thus of particular interest as potential p-type thermoelectric (TE) materials to be used at mid-temperature range. A typical HMS exhibits a maximum dimensionless figure of merit, ZT, around 800 K, but values ranges from 0.3 to 0.7, depending on whether the samples are single-, poly- or oriented-crystalline forms. Currently, several recommended reviews [13] are available but additional results have been obtained since these publications. In this chapter, we will review our current knowledge of the crystal and electronic structure, TE properties, and applications of HMSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.I. Fedorov, V.K. Zaitsev, in Thermoelectric Handbook, ed. by D.M. Rowe (CRC press, Boca Raton, 2006), Chap. 31

    Google Scholar 

  2. V.E. Borisenko (ed.), Semiconducting Silicides, (Springer, Heiderberg, 2000)

    Google Scholar 

  3. I. Nishida, in Thermoelectrics: Principles and Applications, ed. by A. Sakata (Realize Co. Ltd., Tokyo, 2001) Chaps. 1–9 (in Japanese)

    Google Scholar 

  4. H. Nowotny, in The Chemistry of Extended Defects in Non-Metallic Solid, ed. by L. Eyring, M. O’keeffe (North Holland, Amsterdam, 1970)

    Google Scholar 

  5. F. Doerinckel, Z. Anorg, Chem. 50, 117 (1906)

    Google Scholar 

  6. V.A. Korshunov, F.A. Sidorenko, P.V. Gel’d, K.N. Davydov, Fiz. Metal. Metalloved. 12, 277 (1961)

    Google Scholar 

  7. Y. Fujino, D. Shinoda, S. Asanabe, Y. Sasaki, Jpn. J. Appl. Phys. 3, 431 (1964)

    Article  Google Scholar 

  8. O.G. Karpinskii, B.A. Evseev, Izv. Akad. Nauk SSSR. Neorg. Mater. 5, 525 (1969)

    Google Scholar 

  9. U. Gottlieb, A. Sulpice, B. Lambert-Andron, O. Laborde, J. Alloys Compd. 361, 13 (2003)

    Article  Google Scholar 

  10. O. Schwomma, A. Preisinger, H. Nowotny, A. Wittmann, Monatsh. Chem. 95, 1527 (1964)

    Article  Google Scholar 

  11. H.W. Knott, M.H. Mueller, L. Heaton, Acta Cryst. 23, 549 (1967)

    Article  Google Scholar 

  12. G. Flieher, H. Völlenkle, H. Nowotny, Monatsh. Chem. 98, 2173 (1967)

    Article  Google Scholar 

  13. G. Zwilling, H. Nowotny, Monatsh. Chem. 104, 668 (1973)

    Article  Google Scholar 

  14. H.Q. Ye, S. Amelinckx, J. Solid State Chem. 61, 8 (1986)

    Article  Google Scholar 

  15. H. Okamoto, J. Phase Equilibria 12, 505 (1992)

    Article  Google Scholar 

  16. R. De Ridder, S. Amelinckx, Mat. Res. Bull. 6, 1223 (1971)

    Article  Google Scholar 

  17. R. De Ridder, G. van Tendeloo, S. Amelinckx, Phys. Stat. Sol. (a) 30, K99 (1975)

    Article  Google Scholar 

  18. R. De Ridder, G. van Tendeloo, S. Amelinckx, Phys. Stat. Sol. (a) 33, 383 (1976)

    Article  Google Scholar 

  19. A. Yamamoto, Acta Cryst. A 49, 831 (1993)

    Article  Google Scholar 

  20. P.M. de Wolff, Acta Cryst. A 30, 777 (1974)

    Article  Google Scholar 

  21. Y. Miyazaki, D. Igarashi, K. Hayashi, T. Kajitani, K. Yubuta, Phys. Rev. B 78, 214104 (2008)

    Article  Google Scholar 

  22. Y. Miyazaki, in Neutron Diffraction, ed. by I. Khidirov (Intech Open Access Book, Rijeka, Croatia, 2011), chap. 11

    Google Scholar 

  23. L.D. Ivanova, N.K. Abrikosov, E.I. Elagina, V.D. Khvostikova, Izv. Akad. Nauk SSSR. Neorg. Mater. 5, 1933 (1969)

    Google Scholar 

  24. I. Kawasumi, M. Sakata, I. Nishida, K. Masumoto, J. Cryst. Growth 49, 651 (1980)

    Article  Google Scholar 

  25. T. Kojima, I. Nishida, Jpn. J. Appl. Phys. 14, 141 (1975)

    Article  Google Scholar 

  26. T. Kojima, I. Nishida, T. Sakata, J. Cryst. Growth 47, 589 (1979)

    Article  Google Scholar 

  27. N.K. Abrikosov, Izv. Sektora Fiz. -Khim. Analiza IONKh Akad. Nauk SSSR, 27 (1956) 157

    Google Scholar 

  28. I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005)

    Article  Google Scholar 

  29. S. Okada, T. Shishido, M. Ogawa, F. Matsukawa, Y. Ishizawa, K. Nakajima, T. Fukuda, T. Lundström, J. Cryst. Growth 229, 532 (2001)

    Google Scholar 

  30. H. Udono, K. Nakamori, Y. Takahashi, Y. Ujiie, I.J. Ohsugi, T. Iida, J. Electr. Mater. 40, 1165 (2011)

    Article  Google Scholar 

  31. Y. Imai, M. Mukaida, T. Tsunoda, Intermetallics 8, 381 (2000)

    Article  Google Scholar 

  32. Y. Imai, A. Watanabe, Intermetallics 13, 233 (2005)

    Article  Google Scholar 

  33. D.C. Fredrickson, S. Lee, R. Hoffmann, Inorg. Chem. 43, 6159 (2004)

    Article  Google Scholar 

  34. W. Jeitschko, E. Parthé, Acta Cryst. 22, 417 (1967)

    Article  Google Scholar 

  35. D.B. Migas, V.L. Shaposhnikov, A.B. Filonov, V.E. Borisenko, N.N. Dorozhkin, Phys. Rev. B 77, 075205 (2008)

    Article  Google Scholar 

  36. E.N. Nikitin, V.I. Tarasov, P.V. Tamarin, Fiz. Tverd. Tela 11, 234 (1969)

    Google Scholar 

  37. E.N. Nikitin, V.I. Tarasov, A.A. Andreev, L.N. Shumilova, Fiz. Tverd. Tela 11, 3389 (1969)

    Google Scholar 

  38. I. Nishida, J. Mater. Sci. 7, 435 (1972)

    Article  Google Scholar 

  39. I. Kawasumi, M. Sakata, I. Nishida, K. Masumoto, J. Mater. Sci. 16, 355 (1981)

    Article  Google Scholar 

  40. V.A. Korshunov, P.V. Gel’d, Fiz. Metal. Metalloved. 11, 945 (1961)

    Google Scholar 

  41. G. Flieher, H. Völlenkle, H. Nowotny, Monatsh. Chem. 99, 2408 (1968)

    Article  Google Scholar 

  42. E.N. Nikitin, V.I. Tarasov, Fiz. Tverd. Tela 13, 3473 (1971)

    Google Scholar 

  43. V.K. Zaitsev, V.I. Tarasov, A.A. Adilbekov, Fiz. Tverd. Tela 17, 581 (1975)

    Google Scholar 

  44. V.I. Tarasov, E.N. Nikitin, L.N. Shumilova, Izv. Akad. Nauk SSSR. Neorg. Mater. 11, 1038 (1975)

    Google Scholar 

  45. Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, T. Kajitani, Jpn. J. Appl. Phys. 50, 035804 (2011)

    Google Scholar 

  46. Y. Kikuchi, Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta and T. Kajitani, Jpn. J. Appl. Phys. 51, 085801 (2012)

    Google Scholar 

  47. Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, T. Kajitani, Adv. Sci. Tech. 74, 22 (2010)

    Article  Google Scholar 

  48. M. Yoshikura, T. Itoh, J. Jpn. Soc. Powder Powder Metall. 57 (2010) 242, in Japanese

    Google Scholar 

  49. H. Kaga, Y. Kinemuchi and K. Watari, J. Mater. Sci. 22 (2007) 2917

    Google Scholar 

  50. T. Yamada, Y. Miyazaki, H. Yamane, Thin Solid Films 519, 8524 (2011)

    Article  Google Scholar 

  51. I. Aoyama, H. Kaibe, L. Rauscher, T. Kanda, M. Mukoujima, S. Sano, T. Tsuji, Jpn. J. Appl. Phys. 44, 4275 (2005)

    Article  Google Scholar 

  52. K. Maex, M. Van Rossum (eds.) Properties of Metal Silicides (INSPEC, IEE, London, 1995)

    Google Scholar 

  53. E. Groß, M. Riffel, U. Stöhrer, J. Mater. Res. 10, 34 (1995)

    Article  Google Scholar 

  54. J.E. Mahan, Thin Solid Films 461, 152 (2004)

    Article  Google Scholar 

  55. C. Krontiras, K. Pomoni, M. Roilos, J. Phys. D: Appl. Phys. 21, 509 (1988)

    Article  Google Scholar 

  56. S. Teichert, D.K. Sarkar, S. Schwendler, H. Giesler, A. Mogilatenko, M. Falke, G. Beddies, H.J. Hinneberg, Microelectron. Eng. 55, 227 (2001)

    Article  Google Scholar 

  57. S. Teichert, S. Schwendler, D.K. Sarkar, A. Mogilatenko, M. Falke, G. Beddies, C. Kleint, H.J. Hinneberg, J. Cryst. Growth 227–228, 882 (2001)

    Article  Google Scholar 

  58. M. Rebien, W. Henrion, H. Angermann, S. Teichert, Appl. Phys. Lett. 81, 649 (2002)

    Article  Google Scholar 

  59. Q.R. Hou, W. Zhao, Y.B. Chen, Y.J. He, Int. J. Mod. Phys. B 23, 3331 (2009)

    Article  Google Scholar 

  60. Q.R. Hou, W. Zhao, Y.B. Chen, Y.J. He, Mat. Chem. Phys. 121, 103 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzuru Miyazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyazaki, Y., Kikuchi, Y. (2013). Higher Manganese Silicide, \(\mathbf MnSi _{\varvec{\gamma }}\) . In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_7

Download citation

Publish with us

Policies and ethics