Skip to main content

Topological Insulators

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

The recent discovery of a new class of materials, the so-called topological insulators [1–5]. has generated a great interest in the fields of condensed matter physics and materials science [1]. In principle, according to their band structure, compounds can be divided into metals and insulators. Recently a new class of the so-called topological states has emerged, the Quantum Spin Hall (QSH) state in two and three dimensions. The respective materials are called "topological insulators". The 3D topological insulators have a full insulating gap in the bulk, but a topological protected gapless surface or edge states on the boundary [6–8]. Additionally the 2D topological insulators (e.g. HgTe [9, 10], are metallic in the bulk, but can be designed as topological insulators in quantum well structures with a trivial semiconductors such as CdTe. A topological insulator can easily be identified by a few simple rules: the presents of a large spin orbit coupling, an odd number of band inversions between the conduction and the valence band by increasing the average nuclear charge, and a sign change of the symmetry of the molecular orbitals [11]. Similiar features are favorable for thermoelectric properties, thus topological insulators may be good thermoelectric materials and vice versa. Here we present a short introduction to topological insulators and give examples of compound classes where both topological insulators and good thermoelectric properties can be found.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Due to the effects from the Darwin term, the Bi 6s valence electrons will not participate in any bonding, making Bi trivalent.

References

  1. X.L. Qi, S.C. Zhang, Phys. Today 63, 33 (2010)

    Article  Google Scholar 

  2. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  Google Scholar 

  3. J. Moore, Nature 464, 194 (2010)

    Article  Google Scholar 

  4. J.E. Moore, L. Balents, Phys. Rev. B 75, 121306 (2007)

    Article  Google Scholar 

  5. R. Roy, Phys. Rev. B 79, 195321 (2009)

    Article  Google Scholar 

  6. Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen, Science 325, 178 (2009)

    Article  Google Scholar 

  7. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature Phys. 5, 398 (2009)

    Article  Google Scholar 

  8. H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Nature Phys. 5, 438 (2009)

    Article  Google Scholar 

  9. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  Google Scholar 

  10. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007)

    Article  Google Scholar 

  11. L. Müchler, H. Zhang, S. Chadov, B. Yan, F. Casper, J. Kübler, S.C. Zhang, C. Felser, Angew. Chem. Int. Ed. in print (2012).

    Google Scholar 

  12. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  Google Scholar 

  13. X.G. Wen, Adv. Phys. 44, 405 (1995)

    Article  Google Scholar 

  14. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  Google Scholar 

  15. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  Google Scholar 

  16. L. Fu, C.L. Kane, Phys. Rev. B 74, 195312 (2006)

    Article  Google Scholar 

  17. X.L. Qi, T.L. Hughes, S.C. Zhang, Phys. Rev. B 78, 195424 (2008)

    Article  Google Scholar 

  18. A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.L. Qi, S.C. Zhang, Science 325, 294 (2009)

    Article  Google Scholar 

  19. B. Yan, S.C. Zhang, Rep. Prog. Phys. submitted (2012)

    Google Scholar 

  20. X. Dai, T.L. Hughes, X.L. Qi, Z. Fang, S.C. Zhang, Phys. Rev. B 77, 125319 (2008)

    Article  Google Scholar 

  21. C. Brune, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.C. Zhang, L.W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011)

    Article  Google Scholar 

  22. L.W.Y.X.Y.S.H.R.J.C.M.Z.H. D Hsieh, D. Qian, Nature 452, 970 (2008)

    Google Scholar 

  23. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  Google Scholar 

  24. K.W. Yeh, T.W. Huang, Y.L. Huang, T.K. Chen, F.C. Hsu, P.M. Wu, Y.C. Lee, Y.Y. Chu, C.L. Chen, J.Y. Luo, D.C. Yan, M.K. Wu, Europhys. Lett. 84, 37002 (2008)

    Article  Google Scholar 

  25. H. Jin, J. Song, A.J. Freeman, M. Kanatzidis, Phys. Rev. B 83, 041202(R) (2011)

    Google Scholar 

  26. B. Yan, H.J. Zhang, C.X. Liu, X.L. Qi, T. Frauenheim, S.C. Zhang, Phys. Rev. B 82, 161108(R) (2010).

    Google Scholar 

  27. H. Lin, R.S. Markiewicz, L.A. Wray, L. Fu, M.Z. Hasan, A. Bansil, Phys. Rev. Lett. 105, 036404 (2010)

    Article  Google Scholar 

  28. S. Eremeev, Y. Koroteev, E. Chulkov, JETP Lett. 91, 594 (2010)

    Article  Google Scholar 

  29. T. Sato, K. Segawa, H. Guo, K. Sugawara, S. Souma, T. Takahashi, Y. Ando, Phys. Rev. Lett. 105, 136802 (2010)

    Article  Google Scholar 

  30. K. Kuroda, M. Ye, A. Kimura, S.V. Eremeev, E.E. Krasovskii, E.V. Chulkov, Y. Ueda, K. Miyamoto, T. Okuda, K. Shimada, H. Namatame, M. Taniguchi, Phys. Rev. Lett. 105, 146801 (2010)

    Article  Google Scholar 

  31. Y.L. Chen, Z.K. Liu, J.G. Analytis, J.H. Chu, H.J. Zhang, B.H. Yan, S.K. Mo, R.G. Moore, D.H. Lu, I.R. Fisher, S.C. Zhang, Z. Hussain, Z.X. Shen, Phys. Rev. Lett. 105, 266401 (2010)

    Article  Google Scholar 

  32. S.Y. Xu, L.A. Wray, Y. Xia, R. Shankar, S. Jia, A. Fedorov, J.H. Dil, F. Meier, B. Slomski, J. Osterwalder, R.J. Cava, M.Z. Hasan, arXiv:1008.3557 (2010)

    Google Scholar 

  33. S. Jia, H. Ji, E. Climent-Pascual, M.K. Fuccillo, M.E. Charles, J. Xiong, N.P. Ong, R.J. Cava, Phys. Rev. B 84, 235206 (2011). doi:10.1103/PhysRevB.84.235206.

  34. A. Taskin, K. Segawa, Y. Ando, Phys. Rev. B 82, 121302 (2010)

    Article  Google Scholar 

  35. D. Kong, Y. Chen, J.J. Cha, Q. Zhang, J.G. Analytis, K. Lai, Z. Liu, S.S. Hong, K.J. Koski, S.K. Mo, Z. Hussain, I.R. Fisher, Z.X. Shen, Y. Cui, Nature Nanotech. 6, 705 (2011)

    Article  Google Scholar 

  36. J. Zhang, C.Z. Chang, Z. Zhang, J. Wen, X. Feng, K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.K. Xue, X. Ma, Y. Wang, Nature Comm. 2, 574 (2011)

    Article  Google Scholar 

  37. H. Ji, J.M. Allred, M.K. Fuccillo, M.E. Charles, M. Neupane, L.A. Wray, M.Z. Hasan, R.J. Cava, Phys. Rev. B 85, 201103 (2012). doi:10.1103/PhysRevB.85.201103.

  38. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem 39, 1 (2011)

    Article  Google Scholar 

  39. F. Heusler, W. Starck, E. Haupt, Verh. DPG 5, 220 (1903)

    Google Scholar 

  40. F. Heusler, Verh. DPG 5, 219 (1903)

    Google Scholar 

  41. P. Villars, L.D. Calvert, Pearson’s handbook of crystallographic data for intermetallic Phases, American Society of Metals (1991)

    Google Scholar 

  42. J. Nuss, M. Jansen, Z. Anorg, Allg. Chem. 628, 1152 (2002)

    Article  Google Scholar 

  43. H. Nowotny, W. Sibert, Z. Metallkunde 33, 391 (1941)

    Google Scholar 

  44. C. Felser, G.H. Fecher, B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007)

    Article  Google Scholar 

  45. R. Juza, F. Hund, Z. Anorg, Chem. 257, 1 (1948)

    Google Scholar 

  46. H. Nowotny, K. Bachmayer, Monatsh. Chem. 81, 488 (1950)

    Article  Google Scholar 

  47. F. Kalarasse, B. Bennecer, J. Phys. Chem. Sol. 67, 846 (2006)

    Article  Google Scholar 

  48. L. Spina, Y.Z. Jia, B. Ducourant, M. Tillard, C. Belin, Z. Kristallogr. 218, 740 (2003)

    Article  Google Scholar 

  49. H. Nowotny, F. Holub, Monatsh. Chem. 91, 877 (1960)

    Article  Google Scholar 

  50. J.J. Martin, Phys. Chem. Solids 33, 1139 (1972)

    Article  Google Scholar 

  51. H.C. Kandpal, C. Felser, R. Seshadri, J. Phys. D: Appl. Phys. 39, 776 (2006)

    Article  Google Scholar 

  52. S. Bhattacharya, A.L. Pope, R.T.L. IV, T.M. Tritt, V. Ponnambalam, Y. Xia, S.J. Poon, Appl. Physics Lett. 77, 2476 (2000).

    Google Scholar 

  53. S. Sakurada, N. Shutoh, Appl. Phys. Lett. 86(8), 082105 (2005)

    Article  Google Scholar 

  54. N. Shutoh, S. Sakurada, J. Alloys Compd. 389(1–2), 204 (2005)

    Article  Google Scholar 

  55. S. Ouardi, G.H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, C. Felser, S. Lowitzer, D. Ködderitzsch, H. Ebert, E. Ikenaga, Phys. Rev. B 82, 085108 (2010)

    Article  Google Scholar 

  56. S. Ouardi, G.H. Fecher, B. Balke, M. Schwall, X. Kozina, G. Stryganyuk, C. Felser, E. Ikenaga, Y. Yamashita, S. Ueda, K. Kobayashi, Appl. Phys. Lett. 97, 252113 (2010)

    Article  Google Scholar 

  57. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. 48(46), 8616 (2009)

    Article  Google Scholar 

  58. M. Schwall, B. Balke, Appl. Phys. Lett. 98, 042106 (2011)

    Article  Google Scholar 

  59. T. Graf, S.S.P. Parkin, C. Felser, IEEE Trans. Magn. 47, 367 (2011)

    Article  Google Scholar 

  60. T. Graf, P. Klaer, J. Barth, B. Balke, H.J. Elmers, C. Felser, Scripta Mater. 63, 1216 (2010)

    Article  Google Scholar 

  61. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, Z.F. Ren, Nano Lett. 11, 556 (2011)

    Article  Google Scholar 

  62. D. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  63. S. Chadov, X.L. Qi, J. Kübler, G.H. Fecher, C. Felser, S.C. Zhang, Nature Mater. 9, 541 (2010)

    Article  Google Scholar 

  64. H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, M.Z. Hasan, Nature Mater. 9, 546 (2010)

    Article  Google Scholar 

  65. G. Goll, M. Marza, A. Hamanna, T. Tomanica, K. Grubeb, T. Yoshinoc, T. Takabatakec, Physica B 403, 1065 (2008)

    Article  Google Scholar 

  66. P.C. Canfield, J.D. Thompson, W.P. Beyermann, A. Lacerda, M.F. Hundley, E. Peterson, Z. Fisk, H.R. Ott, J. Appl. Phys. 70, 5800 (1991)

    Article  Google Scholar 

  67. Z. Fisk, P.C. Canfield, W.P. Beyermann, J.D. Thompson, M.F. Hundley, H.R. Ott, E. Felder, M.B. Maple, M.A.L. de la Torre, P. Visani, C.L. Seaman, Phys. Rev. Lett. 67(23), 3310 (1991)

    Article  Google Scholar 

  68. E.S.T. G. J. Snyder, Nature Mater. 7, 105 (2008)

    Google Scholar 

  69. B.C. Sales, D. Mandrus, R.K. Williams, Science 272(5266), 1325 (1996). doi:10.1126/science.272.5266.1325.

    Google Scholar 

  70. H. Sato, H. Sugawara, Y. Aoki, H. Harima, Handbook on the Physics and Chemistry of Rare Earths, vol. 33 (Elsevier, Oxford, 2009)

    Google Scholar 

  71. M.B. Maple, Z. Henkie, R.E. Baumbach, T.A. Sayles, N.P. Butch, P.C. Ho, T. Yanagisawa, W.M. Yuhasz, R. Wawryk, T. Cichorek, A. Pietraszko, J. Phys. Soc. Japan Suppl. A 77, 7 (2008)

    Article  Google Scholar 

  72. H. Sato, H. Sugawara, Y. Aoki, H. Harima, Handbook of Magnetic Materials (Elsevier, Oxford, 2009)

    Google Scholar 

  73. B. Yan, L. Müchler, X.L. Qi, S.C. Zhang, C. Felser, Phys. Rev. B 85, 165125 (2012)

    Article  Google Scholar 

  74. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    Article  Google Scholar 

  75. M. Karolak, T.O. Wehling, F. Lechermann, A.I. Lichtenstein, J. Phys.: Condens. Matter 57, 085601 (2011)

    Google Scholar 

  76. D. Kong, Y. Cui, Nature Chem. 3, 845 (2011)

    Article  Google Scholar 

  77. Y. Sun, X.Q. Chen, C. Franchini, D. Li, S. Yunoki, Y. Li, Z. Fang, Phys. Rev. B 84, 165127 (2011)

    Article  Google Scholar 

  78. X. Zhang, H. Zhang, J. Wang, C. Felser, S.C. Zhang, Science 335, 1464 (2012)

    Article  Google Scholar 

  79. H.J. Zhang, S. Chadov, L. Müchler, B. Yan, X.L. Qi, J. Kübler, S.C. Zhang, C. Felser, Phys. Rev. Lett. 106, 156402 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Felser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müchler, L., Yan, B., Casper, F., Chadov, S., Felser, C. (2013). Topological Insulators. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_6

Download citation

Publish with us

Policies and ethics