Skip to main content

Solar TE Converter Applications

  • Chapter
  • First Online:
Thermoelectric Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 182))

Abstract

Thermoelectricity does not only serve to profitably recover waste heat from many technical processes but also to exploit renewable energy resources for power generation. Conversion of concentrated solar radiation for decentralized electricity supply is a very promising application field for thermoelectric (TE) devices. However, experimental and theoretical studies with high-temperature resistant thermoelectric oxide modules (TOMs) reveal that 60 % of the incident solar radiation is lost due to reradiation and only 20 % is available for electricity conversion. Calculations with a heat transfer model show that this loss can be substantially reduced from 60 % to only 4 % by using a solar cavity receiver instead of directly irradiated TE modules. The fraction of actually usable solar power can thereby be increased from 20 to 70 %. Despite the improved exploitation of solar radiation, solar-to-electricity efficiency of TOM converters continues to be low due to the still low Figure of Merit ZT of oxide materials. This disadvantage may in part be compensated by higher temperature differences resulting in higher conversion efficiencies. However, due to the temperature dependence of TE properties the use of a single material at a large temperature difference is not ideal. Preferably, a stack of different materials, each operating in its most efficient temperature range, should be applied. Calculations with the heat transfer model show that with a solar cavity-receiver packed with dual-stage cascaded modules containing—in addition to Bi-Te—a TE oxide available at present \(({\mathrm{ZT }}\,=\,0.36)\) a solar-to-electricity efficiency of 7.4 % can be achieved. With future advanced oxide materials \(({\mathrm{ZT }}\,=\,1.7)\) an efficiency of even 20.8 % seems to be realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Outlook (2011), http://www.eia.gov/forecasts/ieo/

  2. Concentrating Solar Power Global Outlook 09. GreenpeaceInternational, SolarPACES, and ESTELA (2009)

    Google Scholar 

  3. D. Kraemer, B. Poudel, G. Chen, High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011)

    Article  Google Scholar 

  4. S.A. Omera, D.G. Inield, Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation. Energy Conver. Manage. 41, 737–756 (2000)

    Article  Google Scholar 

  5. M. Eswararmoorthy, S. Shanmugam, Thermodynamic analysis of solar parabolic dish thermoelectric generator. Int. J. Renew. Energy Technol. 1, 348–360 (2010)

    Article  Google Scholar 

  6. H. Naito, Y. Kohsaka, D. Cooke, H. Arashi, Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system. Solar Energy 58, 191–195 (1996)

    Article  Google Scholar 

  7. A. Weidenkaff, R. Robert, M.H. Aguirre, L. Bocher, T. Lippert, S. Canulescu, Development of thermoelectric oxides for renewable energy conversion technologies. Renew. Energy 33, 342–347 (2008)

    Article  Google Scholar 

  8. D.M. Rowe, A high performance solar powered thermoelectric generator. Appl. Energy 8, 269–273 (1981)

    Article  Google Scholar 

  9. P. Tomeš, M. Trottmann, A. Weidenkaff, C. Suter, P. Haueter, A. Steinfeld, Thermoelectric oxide modules (TOMs) applied in direct conversion of simulated solar radiation into electrical energy. Materials 3, 2801–2814 (2010)

    Article  Google Scholar 

  10. P. Tome\(\breve{s}\), R. Robert, L. Bocher, M. Trottmann, M.H. Aguirre, A. Weidenkaff, P. Haueter, A. Steinfeld, J. Hejtmánek, Direct conversion of simulated solar radiation into electrical energy by a perovskite thermoelectric oxide module (TOM), in Proceedings of Materials Science and Technology Conference and Exhibition, MS &T ‘08, vol. 1, pp. 429–435 (2008)

    Google Scholar 

  11. S.S. Kim, F. Yin, Y. Kagawa, Thermoelectricity for crystallographic anisotropy controlled Bi-Te based alloys and p-n modules. J. Alloys Compd. 419, 306–311 (2006)

    Article  Google Scholar 

  12. O. Yamashita, S. Sugihara, High-performance bismuth-telluride compounds with highly stable thermoelectric figure of merit. J. Mater. Sci. 40, 6439–6444 (2005)

    Article  Google Scholar 

  13. E.S. Reddy, J.G. Noudem, S. Hebert, C. Goupil, Fabrication and properties of four-leg oxide thermoelectric modules. J. Phys. D Appl. Phys. 38, 3751–3755 (2005)

    Article  Google Scholar 

  14. W. Shin, N. Muruyama, K. Ikeda, S. Sago, Thermoelectric power generation using Li-doped NiO and (Ba, Sr)\({{\text{ PbO }}_{3}}\) module. J. Power Sources 103, 80–85 (2001)

    Article  Google Scholar 

  15. R. Funahashi, M. Mikami, T. Mihara, S. Urata, N. Ando, A portable thermoelectric-power-generating module composed of oxide devices. J. Appl. Phys. 99, 066117 (2006)

    Article  Google Scholar 

  16. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, Oxide single crystal with high thermoelectric performance in air. Japan. J. Appl. Phys. 39, 1127–1129 (2000)

    Article  Google Scholar 

  17. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, K. Mikami, \({{\text{ Ca }}_{2.7}}{{\text{ Bi }}_{0.3}}{{\text{ Co }}_{4}}{{\text{ O }}_{9}}\)/\({{\text{ La }}_{0.9}}{{\text{ Bi }}_{0.1}}{{\text{ NiO }}_{3}}\) thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036–1038 (2004)

    Article  Google Scholar 

  18. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in \({{\text{ NaCo }}_{2}}{{\text{ O }}_{4}}\) single crystal. Phys. Rev. B 56, 12685–12687 (1997)

    Article  Google Scholar 

  19. M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, H. Nagai, Synthesis of \({{\text{ NaxCo }}_{2}}{{\text{ O }}_{4}}\) thermoelectric oxides by the polymerized complex method. Scr. Mater. 48, 403–408 (2003)

    Article  Google Scholar 

  20. A. Maignan, S. Hebert, L. Pi, D. Pelloquin, C. Martin, C. Michel, M. Hervieu, B. Raveau, Perovskite manganites and layered cobaltites: potential materials for thermoelectric applications. Crystal Eng. 5, 365–382 (2002)

    Article  Google Scholar 

  21. A. Maignan, L.B. Wang, S. Hebert, D. Pelloquin, B. Raveau, Large thermopower in metallic misfit cobaltites. Chem. Mater. 14, 1231–1235 (2001)

    Google Scholar 

  22. B. Raveau, C. Martin, A. Maignan, What about the role of B elements in the CMR properties of \({{\text{ ABO }}_{3}}\) perovskites? J. Alloys Comp. 275–277, 461–467 (1998)

    Article  Google Scholar 

  23. M.A. Subramanian, A.P. Ramirez, G.H. Kwei, Colossal magnetoresistance behavior in manganese oxides: pyrochlore versus perovskite. Solid State Ionics 108, 185–191 (1998)

    Article  Google Scholar 

  24. S. Zhou, J. Zhao, S. Chu, L. Shi, Synthesis, characterization and magnetic properties of lightly doped \({{\text{ La }}_{2-{\text{ x }}}}{{\text{ Sr }}_{\text{ x }}}{{\text{ CuO }}_{4}}\) (x = 0.04) nanoparticles. Phys. C 451, 38–43 (2007)

    Article  Google Scholar 

  25. L. Bocher, R. Robert, M.H. Aguirre, S. Malo, S. Hébert, A. Maignan, A. Weidenkaff, Thermoelectric and magnetic properties of perovskite-type manganate phases synthesised by ultrasonic spray combustion (USC). Solid State Sci. 10, 496–501 (2008)

    Article  Google Scholar 

  26. M.P. Pechini, in U.S. Patent No 3 330 697 (1967)

    Google Scholar 

  27. M. Gülgün, M.H. Nguyen, W.M. Kriven, Polymerized organic-inorganic synthesis of mixed oxides. J. Am. Cer. Soc. 82, 556–560 (2003)

    Article  Google Scholar 

  28. A. Weidenkaff, Preparation and application of nanostructured perovskite phases. Adv. Eng. Mater. 6, 709–714 (2004)

    Article  Google Scholar 

  29. D.D.L. Chung, Composite material: science and applications, in Engineering Materials and Processes, 2nd edn. (Springer, London/England, 2010)

    Google Scholar 

  30. P. Tomeš, C. Suter, M. Trottmann, A. Steinfeld, A. Weidenkaff, Thermoelectric oxide modules tested in a solar cavity-receiver. J. Mater. Res. 26, 1975–1982 (2011)

    Article  Google Scholar 

  31. D. Hirsch, P.V. Zedtwitz, T. Osinga, A new 75 kW high-flux solar simulator for high-temperature thermal and thermochemical research. J. Solar. Energy Eng. 125, 117–120 (2003)

    Article  Google Scholar 

  32. C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, Heat transfer analysis and geometrical optimization of thermoelectric converters driven by concentrated solar radiation. Materials 3, 2735–2752 (2010)

    Article  Google Scholar 

  33. T.P. Hogan, T. Shih, Modeling and characterization of power generation modules based on bulk materials, in Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton/USA, 2006)

    Google Scholar 

  34. A. Steinfeld, M. Schubnell, Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy 50, 19–25 (1993)

    Article  Google Scholar 

  35. W.T. Welford, R. Winston, High Collection Non-imaging Optics (Academic Press, San Diego/USA, 1989)

    Google Scholar 

  36. M. Bauccio, ASM Metals Reference Book, 3rd edn. (ASM International: Materials Park/USA, 1997), p. 139

    Google Scholar 

  37. C. Suter, P. Tomeš, A. Weidenkaff, A. Steinfeld, A solar cavity-receiver packed with an array of thermoelectric converter modules. Solar Energy 85, 1511–1518 (2011)

    Article  Google Scholar 

  38. Y.S. Touloukian, Thermal Radiative Properties (New York/USA, IFI/Plenum, 1972)

    Google Scholar 

  39. G.J. Snyder, Thermoelectric power generation: efficiency and compatibility, in Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton/US, 2006)

    Google Scholar 

  40. G.J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436–2438 (2004)

    Article  Google Scholar 

  41. Quick-Ohm, http://www.quick-ohm.de/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Weidenkaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weidenkaff, A., Trottmann, M., Tomeš, P., Suter, C., Steinfeld, A., Veziridis, A. (2013). Solar TE Converter Applications. In: Koumoto, K., Mori, T. (eds) Thermoelectric Nanomaterials. Springer Series in Materials Science, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37537-8_16

Download citation

Publish with us

Policies and ethics