Skip to main content

An Accurate Method for Line Detection and Manhattan Frame Estimation

  • Conference paper
Computer Vision - ACCV 2012 Workshops (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7729))

Included in the following conference series:

Abstract

We address the problem of estimating the rotation of a camera relative to the canonical frame of an urban scene, from a single image. Solutions generally rely on the so-called ‘Manhattan World’ assumption [1] that the major structures in the scene conform to three orthogonal principal directions. This can be expressed as a generative model in which the dense gradient map of the image is explained by a mixture of the three principal directions and a background process [2]. It has recently been shown that using sparse oriented edges rather than the dense gradient map leads to substantial gains in both accuracy and speed [3]. Here we explore whether further gains can be made by basing inference on even sparser extended lines. Standard Houghing techniques suffer from quantization errors and noise that make line extraction unreliable. Here we introduce a probabilistic line extraction technique that eliminates these problems through two innovations. First, we accurately propagate edge uncertainty from the image to the Hough map through a bivariate normal kernel that uses natural image statistics, resulting in a non-stationary ‘soft-voting’ technique. Second, we eliminate multiple responses to the same line by updating the Hough map dynamically as each line is extracted. We evaluate the method on a standard benchmark dataset [3], showing that the resulting line representation supports reliable estimation of the Manhattan frame, bettering the accuracy of previous edge-based methods by a factor of 2 and the gradient-based Manhattan World method by a factor of 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coughlan, J.M., Yuille, A.L.: Manhattan world: Compass direction from a single image by Bayesian inference. In: International Conference on Computer Vision (1999)

    Google Scholar 

  2. Coughlan, J.M., Yuille, A.L.: Manhattan world: Orientation and outlier detection by Bayesian inference. Neural Computation 15, 1063–1088 (2003)

    Article  Google Scholar 

  3. Denis, P., Elder, J.H., Estrada, F.J.: Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Yu, S.X., Zhang, H., Malik, J.: Inferring spatial layout from a single image via depth-ordered grouping. In: CVPR Workshop (2008)

    Google Scholar 

  5. Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: ICCV 2009, pp. 1849–1856 (2009)

    Google Scholar 

  6. Hough, P.V.C.: Method and Means for Recognizing Complex Patterns. U. S. Patent 3, 069, 654 (1962)

    Google Scholar 

  7. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 1, 11–15 (1972)

    Article  Google Scholar 

  8. O’Gorman, F., Clowes, M.: Finding picture edges through collinearity of feature points. IEEE Transactions on Computers C-25, 449–456 (1976)

    Article  Google Scholar 

  9. Ballard, D.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13, 111–122 (1981)

    Article  MATH  Google Scholar 

  10. Klviinen, H., Hirvonen, P., Xu, L., Oja, E.: Probabilistic and non-probabilistic Hough transforms: overview and comparisons. Image and Vision Computing 13, 239–252 (1995)

    Article  Google Scholar 

  11. Stephens, R.: Probabilistic approach to the Hough transform. Image and Vision Computing 9, 66–71 (1991)

    Article  Google Scholar 

  12. Kiryati, N., Bruckstein, A.M.: Heteroscedastic Hough transform (HtHT): an efficient method for robust line fitting in the ‘errors in the variables’ problems. Comput. Vis. Image Underst. 78, 69–83 (2000)

    Article  Google Scholar 

  13. Li, Q., Xie, Y.: Randomised Hough transform with error propagation for line and circle detection. Pattern Analysis and Applications 6, 55–64 (2003)

    Article  MATH  Google Scholar 

  14. Fernandes, L.A.F., Oliveira, M.M.: Real-time line detection through and improved Hough transform voting scheme. Pattern Recognition 41, 299–314 (2008)

    Article  MATH  Google Scholar 

  15. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill (1969)

    Google Scholar 

  16. Barinova, O., Lempitsky, V., Kohli, P.: On detection of multiple object instances using Hough transforms, pp. 2233–2240 (2010)

    Google Scholar 

  17. Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. Transactions on Pattern Analysis and Machine Intelligence 20, 699–716 (1998)

    Article  Google Scholar 

  18. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8, 679–698 (1986)

    Google Scholar 

  19. Bishop, C.M.: Pattern Recognition and Machine Learning, 1st edn. Springer (2006)

    Google Scholar 

  20. Barnard, S.T.: Interpreting perspective images. Artificial Intelligence 21, 435–462 (1983)

    Article  Google Scholar 

  21. Košecká, J., Zhang, W.: Video Compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002)

    Google Scholar 

  22. Schindler, G., Dellaert, F.: Atlanta world: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In: CVPR 2004, pp. 203–209 (2004)

    Google Scholar 

  23. Avriel, M.: Nonlinear Programming: Analysis and Methods. Prentice Hall (2003)

    Google Scholar 

  24. Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: ICCV 2009 (2009)

    Google Scholar 

  25. Barinova, O., Lempitsky, V., Tretiak, E., Kohli, P.: Geometric Image Parsing in Man-Made Environments. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 57–70. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tal, R., Elder, J.H. (2013). An Accurate Method for Line Detection and Manhattan Frame Estimation. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37484-5_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37483-8

  • Online ISBN: 978-3-642-37484-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics