Skip to main content

KinectAvatar: Fully Automatic Body Capture Using a Single Kinect

  • Conference paper
Computer Vision - ACCV 2012 Workshops (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7729))

Included in the following conference series:

Abstract

We present a novel scanning system for capturing a full 3D human body model using just a single depth camera and no auxiliary equipment. We claim that data captured from a single Kinect is sufficient to produce a good quality full 3D human model. In this setting, the challenges we face are the sensor’s low resolution with random noise and the subject’s non-rigid movement when capturing the data. To overcome these challenges, we develop an improved super-resolution algorithm that takes color constraints into account. We then align the super-resolved scans using a combination of automatic rigid and non-rigid registration. As the system is of low price and obtains impressive results in several minutes, full 3D human body scanning technology can now become more accessible to everyday users at home.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Microsoft, http://www.xbox.com/en-US/kinect

  2. Cui, Y., Schuon, S., Chan, D., Thrun, S., Theobalt, C.: 3D shape scanning with a time-of-flight camera. In: IEEE Proc. CVPR (2010)

    Google Scholar 

  3. Chang, W., Zwicker, M.: Global registration of dynamic range scans for articulated model reconstruction. ACM Trans. Graph. 30 (2011)

    Google Scholar 

  4. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In: RGB-D: Advanced Reasoning with Depth Cameras Workshop in Conjunction with RSS (2010)

    Google Scholar 

  5. Newcombe, R.A., Kim, D., Kohli, P.: Kinectfusion: Real-time dense surface mapping and tracking. In: ISMAR (2011)

    Google Scholar 

  6. Cui, Y., Stricker, D.: 3D shape scanning with a kinect. ACM SIGGRAPH Posters (2011)

    Google Scholar 

  7. Weiss, A., Hirshberg, D., Black, M.J.: Home 3D body scans from noisy image and range data. In: Proc. IEEE Intl, Conf. Computer Vision, CVPR (2011)

    Google Scholar 

  8. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. ACM Trans. Graph. (SIGGRAPH) 24, 408–416 (2005)

    Article  Google Scholar 

  9. Tong, J., Zhou, J., Liu, L., Pan, Z., Yan, H.: Scanning 3D full human bodies using kinects. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Virtual Reality) (2012) (to appear)

    Google Scholar 

  10. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision (1998)

    Google Scholar 

  11. Schuon, S., Theobalt, C., Davis, J., Thrun, S.: Lidarboost: Depth superresolution for ToF 3D shape scanning. In: Proc. CVPR (2009)

    Google Scholar 

  12. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE PAMI 14, 239–256 (1992)

    Article  Google Scholar 

  13. Benjemaa, R., Schmitt, F.: A Solution for the Registration of Multiple 3D Point Sets Using Unit Quaternions. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 34–50. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Bergevin, R., Soucy, M., Gagnon, H., Laurendeau, D.: Towards a general multi-view registration technique. IEEE PAMI 18, 540–547 (1996)

    Article  Google Scholar 

  15. Weise, T., Wismer, T., Leibe, B., Van Gool, L.: Online loop closure for real-time interactive 3D scanning. Computer Vision and Image Understanding 115 (2011)

    Google Scholar 

  16. Mitra, N.J., Flory, S., Ovsjanikov, M., Gelfand, N., Guibas, L., Pottmann, H.: Dynamic geometry registration. In: Symposium on Geometry Processing, pp. 173–182 (2007)

    Google Scholar 

  17. Huang, Q., Adams, B., Wicke, M., Guibas, L.: Non-rigid registration under isometric deformations. Computer Graphics Forum 27, 1449–1457 (2008)

    Article  Google Scholar 

  18. Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., Schilling, A.: Efficient reconstruction of non-rigid shape and motion from real-time 3D scanner data. ACM Trans. Graph. (2009)

    Google Scholar 

  19. Popa, T., South-Dickinson, I., Bradley, D., Sheffer, A., Heidrich, W.: Globally consistent space-time reconstruction. Computer Graphics Forum (Proceedings of SGP) 29 (2010)

    Google Scholar 

  20. Li, H., Luo, L., Vlasic, D., Peers, P., Popović, J., Pauly, M., Rusinkiewicz, S.: Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31 (2012)

    Google Scholar 

  21. Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber, J., Seidel, H.-P.: Animation cartography - intrinsic reconstruction of shape and motion. ACM Trans. Graph. (to appear)

    Google Scholar 

  22. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70 (2006)

    Google Scholar 

  23. Cui, Y., Schuon, S., Thrun, S., Stricke, D., Theobalt, C.: Algorithms for 3D shape scanning with a depth camera. IEEE T-PAMI (2012)

    Google Scholar 

  24. Weickert, J., Hagen, H.E.: Visualization and Processing of Tensor Fields. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  25. Myronenko, A., Song, X., Carreira-Perpinan, M.: Non-rigid point set registration: Coherent Point Drift. In: NIPS, vol. 19, p. 1009 (2007)

    Google Scholar 

  26. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC (1994)

    Google Scholar 

  27. Rosenhahn, B.: Pose estimation revisited. PhD thesis, Universität Kiel (2003)

    Google Scholar 

  28. Cui, Y., Hildenbrand, D.: Pose estimation based on geometric algebra. In: GraVisMa (2009)

    Google Scholar 

  29. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE PAMI 26, 1124–1137 (2004)

    Article  Google Scholar 

  30. Sander, P.V., Wood, Z.J., Gortler, S.J., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP, pp. 146–155 (2003)

    Google Scholar 

  31. Nöll, T., Stricker, D.: Efficient packing of arbitrary shaped charts for automatic texture atlas generation. Computer Graphics Forum 30, 1309–1317 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, Y., Chang, W., Nöll, T., Stricker, D. (2013). KinectAvatar: Fully Automatic Body Capture Using a Single Kinect. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37484-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37483-8

  • Online ISBN: 978-3-642-37484-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics