Skip to main content

Specific Intermolecular Interactions of Urea, Uracile, and Their Derivatives

  • Chapter
  • First Online:
Book cover Specific Intermolecular Interactions of Nitrogenated and Bioorganic Compounds

Abstract

The derivatives of the β-tautomer (isourea) are characterized by strong basic properties, forming ions H2NCON3 + and H2NC(NH)O in a water environment [1]. “Pure” crystalline urea is a mixture of mono crystals with a tetragonal system, the lattice constants of which belong to the structural class P421m, Z = 2(mm2), and have the values a = 0.5645, b = 0.5645, and c = 0.4704 nm [2]. The crystalline structures of urea have the shapes of needles and stratiforms, the layers of which consist of plane prisms, formed by peptide (amide) bonds >С=О•••Н–N< [1]. The urea molecule has a planar structure with a sufficiently strong electric moment of dipole μ = 4.6 D or ≈ 15.3•10−30 cm at 298 K [3] owing to the asymmetric distribution of the density of n- and π-bonding electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knunyanec ILM (1964) Chemical entomology. Sov Entomol 3:639

    Google Scholar 

  2. Heger G, Klein S et al (1980) A comparative analysis of the crystal structures of carbamide and thiocarbamide. Zetschr Kristallogr 153:237–254

    Article  Google Scholar 

  3. Clellan AI (1963) Tables of experimental dipole moments. Freeman, San Francisco

    Google Scholar 

  4. Katz M, Lobo PW, Minano AS (1969) Polarizability and apparent radius of urea. J Chem Phys at Phys Chem Biol 66(6):1045–1048

    CAS  Google Scholar 

  5. Dominikova F, Chargitty I (eds) (1997) Molecular structure: precise methods of investigation. Мir, Мoscow, p 671

    Google Scholar 

  6. Arnett EM (1967) Modern problems of physic organic chemistry. Мir, Мoscow, pp 195–341

    Google Scholar 

  7. Mullen D, Hellner EA (1978) Simple refinement of the density distribution of the bonding electrons. V. Bond electron density distribution in urea, CO(NH2)2 at 123 K. Acta Cristallogr 34(5):1624–1627

    Article  Google Scholar 

  8. Vinogradov C (1984) In: Rataichik G, Orvill-Tomas WJ (eds) Molecular interactions. Мir, Мoscow, pp 184–232

    Google Scholar 

  9. Muidinov RY, Zorkii PM (1999) A comparative analysis of the crystal structures of carbamide and thiocarbamide. J Struct Chem 40(6):931–939

    Article  CAS  Google Scholar 

  10. Gartland GL, Craven BM (1974) Hydrogen bonding NHO=C of barbiturates: the (1:1) crystal complex of urea and 5,5-diethylbarbituric acid (barbital). Acta Cryst 30(4):980–987

    Article  Google Scholar 

  11. Wolfenden R (1978) Interaction of the peptide bond with solvent water: a vapor phase analysis. Biochemistry 17(2):201

    Article  CAS  Google Scholar 

  12. Orita Y, Pullman A (1977) Quantum mechanical studies of environmental effect on biomolecules, VII hydration of urea. Theor Chim Acta 45(4):257–258

    Article  CAS  Google Scholar 

  13. Bonner OD, Bednarek JM, Arisman RK (1977) Heat capacities of ureas and water in water and dimethylformamides. J Am Chem Soc 99(9):2898–2902

    Article  CAS  Google Scholar 

  14. Bonner OD, Jordan CF (1976) The interaction of salts, amides, and water. Physiol Chem Phys 8(4):293–301

    CAS  Google Scholar 

  15. Kucherjavei V, Lebedev VV (1970) Synthesis and applied carbamides. Chemistry, Leningrad, p 441

    Google Scholar 

  16. Belousov VP, Morachevakei AG, Panov MY (1981) Heat properties of non-electrolyte solutions. Chemistry, Leningrad, p 264

    Google Scholar 

  17. Pimentel V, Mak-Klellan O (1964) Hydrogen bonds. Mir, Moscow, p 462

    Google Scholar 

  18. Spencer JN, Hovick JW (1970) Solvation of urea and methyl-substituted urea by water and DMF. Can J Chem 66(3):562–565

    Google Scholar 

  19. Gy J, Van Hook WA (1981) Effect in aqueous system. Thermodynamics of urea-h4/H2O and urea-d4/D2O solutions. J Phys Chem 85(25):3480–3493

    Google Scholar 

  20. Baev AK (2003) Novel approaches to the structure of functional solvents and elementorganic compounds with saturated hydrocarbon ligands and their solvates in binary systems. Book of abstract of 27th international conference on solution chemistry, Debrecen, p 79

    Google Scholar 

  21. Baev AK (2004) Insolvency of sp3-gibrydixation model of carbon atom and chemistry of non-electrolytes solutions. Book of abstract of 9th international conference on the problems of solvation and complex formation in solution, Ivanovo, pp 62–64

    Google Scholar 

  22. Baev AK (2004) Lack of co-ordination of thermodynamic properties of elementorganic compounds with sp3-hibrydization model of carbon atom and its insolvency. Book of abstract. Russian research symposium on thermochemistry and calorimeters, Niznie Novgorod, pp 40–41

    Google Scholar 

  23. Baev AK (2009) Phenomenological significance of no identical sp3-hibridization model and nature of interaction in chemistry of liquid non-electrolytes and chemical thermodynamics. Book of abstract of the 10th international conference on physical and coordination chemistry of porphyrines and them analogous, Ivanovo, p 86

    Google Scholar 

  24. Tanaka H, Touhara H, Nakanishi K, Watanabe N (1984) Computer experiment on aqueous solution. IV. Molecular dynamics calculation on the hydration of urea in an infinitely dilune aqueous solution with a new urea – water pair potential. J Chem Phys 80(10):5170–5186

    Article  CAS  Google Scholar 

  25. Cristinziano P, Leli F, Amodeo P, Barone V (1987) Molecular dynamics studies of associations in solutions an NPT simulations of the urea dimer in water. Chem Phys Lett 140(4):401–405

    Article  CAS  Google Scholar 

  26. Cristinziano P, Leli F, Amodeo P et al (1989) Stability and structure of formamide and urea dimera in aqueous solutions. J Chem Soc Faraday Trans Part 1 85(3):621–632

    Article  CAS  Google Scholar 

  27. Klrssinger M, Rademacher P (1979) Konformationsanalyse durch Photoelektronen-Spektroskopie. Angev. Chem. Bd 91(11):885–896

    Google Scholar 

  28. Astrand PO, Wallqvist A, Karlstrom G, Linse F (1991) Properties of urea-water solvation calculated from a new ab initio polarizable intermolecular potential. J Chem Phys 95(11):8419–8429

    Article  Google Scholar 

  29. Finney JL, Turner J (1988) Neutron scattering studies of molecular hydration in solution. Electrochim Acta 106(20):1183–1190

    Article  Google Scholar 

  30. Baev AK (1969) Problems of chemical nature of phase transformation. In: General and applied chemistry, vol 1. Vysheischaia Educating, Minsk, pp 197–206

    Google Scholar 

  31. Baev AK (1969) Phase condition and complex formation ability of halogenide metals. In: General and applied chemistry, vol 1. Vysheischaia Educating, Minsk, pp 207–218

    Google Scholar 

  32. Nefedov VI, Vovna VI (1989) Electronic structure of organic and elementorganic compound. Nauka, Moscow, 176p

    Google Scholar 

  33. Baev AK (2001) Thermodynamic of vaporization of alkyl compounds elements second – six groups. Russian J Izvestiya Vischich Ucheb Zaved Chem Chem Technol 44(1):3–13

    CAS  Google Scholar 

  34. Suzuki K, Onshi S, Koide T, Seki S (1956) Vapor pressure of molecular crystals. XI. Vapor pressure of molecular crystalline urea and diformylhydrazine, energies of hydrogen djnds in these crystals. Bull Chem Soc Jpn 29:127–131

    Article  CAS  Google Scholar 

  35. Chickos JS, Acree WE (2002) Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. J Phys Chem Rev 31(2):537

    CAS  Google Scholar 

  36. Emel’yanenko VN, Kabo GJ, Verevkin SP (2006) Measurement and prediction of thermochemical properties: improved increments of sublimation and standard enthalpies of formation of the alkyl derivatives of urea. J Chem Data 51:79–87

    Article  Google Scholar 

  37. Ivanov EV, Abrosimov VK (2001) Biological activity compounds in solutions. In: Kutepov AM (ed) Structure, thermodynamics, reaction ability. Nauka, Moscow, p 402

    Google Scholar 

  38. Agakova K, Takenak AN, Sasaki K (1970) Ultrasonic study of dilute aqueous solutins of urea guanidine hydrochloride and dioxane. Bull Chem Soc 49(3):636–641

    Google Scholar 

  39. Endo H (1973) The adiabatic compressibility of nonelectrolyte aqueous solutions in relation to the structures of water and solutions. Bull Chem Soc Jpn 46(4):1106–1111

    Article  CAS  Google Scholar 

  40. Mathieson JG, Conway BE (1974) H2O−D2O solvent isotope effect in the apparent molal volume and compressibility of urea. J Solut Chem 3(10):782–788

    Article  Google Scholar 

  41. Ogawa T, Yasufa M, Mizutami K (1984) Volume and adiabatic compressibility of amino acids in urea water mixture. Bull Chem Soc Jap 57(3):662–669

    Article  CAS  Google Scholar 

  42. Juszkiewieiz A (1988) Study on hydration of urea and amides by use of the ultrasonic method. Zitchr Phys Chem (BRD) 158(1):87–96

    Google Scholar 

  43. Puliti R, Mattia CA, Barone G, Giancola C (1989) Structure of some N-acetylamides of amino acides. Acta Crystallogr C 45:1554–1557

    Article  Google Scholar 

  44. James DW, Armishaw RF, Frost RL (1976) Structure of aqueous solutions, libration band studies of hydrophobic and hydrophilic effects in solutins of electrolytes and nonelectrolytes. J Phys Chem 80(12):1346–1350

    Article  CAS  Google Scholar 

  45. Finer EG, Franks F, Tail M (1972) Nuclear magnetic resonance studies aqueous urea solutions. J Am Chem Soc 94(13):4424–4429

    Article  CAS  Google Scholar 

  46. Zaitsav DV, Kabo GJ, Kazuro AA, Sevruk VM (2003) The effect of the failure of isotropy of a gas in an effusion cell on the vapor pressure and enthalpy of sublimation for alkyl derivatives carbamide. Thermochim Acta 406:17–28

    Article  Google Scholar 

  47. Kabo GJ, Kazuro AA, Sevruk VM (1995) Thermodynamic properties of organic compounds in crystalline state 2 heat capacities and enthalpies of phase transition of the alkyl derivatives of urea in the crystalline state. J Chem Eng Data 40:371–393

    Article  CAS  Google Scholar 

  48. Zaitsav DV, Verevkin SP, Paulechka VU, Kabo GJ, Sevruk VM (2003) Comprehensive study of vapor pressure and enthalpies of vaporization of cyclohexyl esters. J Chem Eng Data 48:1399–1400

    Google Scholar 

  49. Piacente V, Ferro D, Della Gatta G (1990) Sublimation enthalpy of eleven urea. Thermochim Acta 158:79–85

    Article  CAS  Google Scholar 

  50. Ferro D, Barone G, Della Gatta G, Piacente V (1987) Vapor pressure and sublimation enthalpies of urea and some of its derivatives. J Chem Thermodyn 19:915–923

    Article  CAS  Google Scholar 

  51. Fiorari P, Ferro D (1987) Sublimation enthalpy of monobutyl urea. Thermochim Acta 112:387–389

    Article  Google Scholar 

  52. De Wit HG, Van Miltenburg JC, De Kruif CG (1987) Thermodynamic properties of molecular organic crystals containing nitrogen, oxygen, and sulfur. 1. Vapor pressure and enthalpies of sublimation. J Chem Thermodyn 15:657–663

    Google Scholar 

  53. Karlson, TA (1981) Photo electronic and OGE-spectrosopy. Mechanical Engineering, Leningrad, 431p

    Google Scholar 

  54. Nefedov VI (1984) X-ray spectroscopy of chemical compounds. Chemistry, Moscow, 255p

    Google Scholar 

  55. Chickos JS, Acree WE (2003) Enthalpies of sublimation of organic and organometallic compounds, 1910–2001. J Phys Chem Rev Data 32:537–698

    Article  Google Scholar 

  56. Baev AR (2012) Specific intermolecular interactions of organic compounds. Springer, Hiedelberg/Dordrecht/London/New York, 434p

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baev, A.K. (2014). Specific Intermolecular Interactions of Urea, Uracile, and Their Derivatives. In: Specific Intermolecular Interactions of Nitrogenated and Bioorganic Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37472-2_11

Download citation

Publish with us

Policies and ethics