Skip to main content

Heat Transfer Behaviors of Thermal Energy Storages for High Temperature Solar Systems

  • Chapter
  • First Online:
Industrial and Technological Applications of Transport in Porous Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 36))

  • 1324 Accesses

Abstract

Solar energy is an important alternative energy source that will likely be utilized in the future. One main limiting factor in the application of solar energy is its cyclic time dependence. Therefore, solar systems require energy storage to provide energy during the night and overcast periods. Although the need of thermal energy storage also exists for many other thermal applications, it is particularly notable for solar applications. It can improve the efficient use and provision of thermal energy whenever there is a mismatch between energy generation and use. In sensible thermal storage, energy is stored by changing the temperature of a storage medium. The amount of energy input to thermal energy storage by a sensible heat device is proportional to the difference between the storage final and initial temperatures, the mass of storage medium and its heat capacity. Each medium and porous matrix has its own advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a sf :

Specific surface area, m−1

c, c p :

Specific heat, Jkg−1K−1

C:

Inertia coefficient

d p :

sphere diameter

D :

Cylinder diameter, m

G :

Mass velocity, kg m−2 s−1

h :

Surface heat transfer coefficient, Wm−2K−1

h sf :

Interfacial heat transfer coefficient between solid matrix and fluid, Wm-2K-1

H :

Height of the cross section, m

k :

Thermal conductivity, Wm−1K−1

K :

Permeability, m−2

L :

Cylinder height, channel length, m

m :

Mass flow rate, kg s−1

p :

Pressure, Pa

Pr:

Prandtl number

q :

Heat flux, Wm−2

r, z:

Cylindrical coordinates, m

Re:

Reynolds number

s :

Channel thickness, m

t :

Time, s

T :

Temperature, K

u, v :

Velocity component, ms−1

x, y, z:

Cartesian coordinates, m

ε :

Emissivity coefficient

φ :

Porosity

µ :

Dynamic viscosity, Pa s

ρ :

Density, kgm-3

f :

Fluid

in :

Initial

p :

Porous

s :

Solid

References

  1. Dell, R., Rand, D.: Energy storage—a key technology for global energy sustainability. J. Power Sources 100, 2–17 (2001)

    Article  CAS  Google Scholar 

  2. Dincer, I., Rosen, M.: Thermal energy storage: System and application. Wiley, New York (2002)

    Google Scholar 

  3. Beckmann, G., Gilli, P.V.: Thermal energy storage: Basics, design applications to power generation and heat supply. Springer, Heidelberg (2002)

    Google Scholar 

  4. Paksoy, H.Ö.: Thermal energy storage for sustainable energy consumption: Fundamentals case studies and design. Springer, Heidelberg (2007)

    Book  Google Scholar 

  5. Arteconi, A., Hewitt, N.J., Polonara, F.: State of the art of thermal storage for demand-side management. Appl. Energy 93, 371–389 (2012)

    Article  Google Scholar 

  6. Oró, E., Gil, A., de Gracia, A., Boer, D., Cabeza, L.F.: Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renew. Energy 44, 166–173 (2012)

    Article  Google Scholar 

  7. Lia, P., Van Lew, J., Chan, C., Karaki, W., Stephens, J., O’Brien, J.E.: Similarity and generalized analysis of efficiencies of thermal energy storage systems. Renew. Energy 39, 388–402 (2012)

    Article  Google Scholar 

  8. Zanganeh, G., Pedretti, A., Zavattoni, S., Barbato, M., Steinfeld, A.: Packed-bed thermal storage for concentrated solar power—pilot-scale demonstration and industrial-scale design. Sol. Energy 86, 3084–3098 (2012)

    Article  Google Scholar 

  9. Calvet, N., Gomez, J.C., Faik, A., Roddatis, V.V., Meffre, A., Glatzmaier, G.C., Doppiu, S., Py, X.: Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system. Appl. Energy http://dx.doi.org/10.1016/j.apenergy.2012.12.078 (2013)

  10. Singh, H., Saini, R.P., Saini, J.S.: A review on packed bed solar energy storage systems. Renew. Sust. Energy Rev. 14, 1059–1069 (2010)

    Article  CAS  Google Scholar 

  11. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energy. Rev. 13, 318–345 (2009)

    Article  CAS  Google Scholar 

  12. Gil, A., Medrano, M., Martorell, I., Lazaro, A., Dolado, P., Zalba, B., Cabeza, L.: State of the art on high temperature thermal energy storage for power generation. Part1—concepts, materials, and modellization. Renew. Sust. Energy Rev. 14, 31–55 (2010)

    Google Scholar 

  13. Hänchen, M., Brückner, S., Steinfeld, A.: High-temperature thermal storage using a packed bed of rocks—heat transfer analysis and experimental validation. Appl. Thermal Eng. 31, 1798–1806 (2011)

    Article  Google Scholar 

  14. Powell, K.M., Edgar, T.F.: Modeling and control of a solar thermal power plant with thermal energy storage. Chem. Eng. Sci. 71, 138–145 (2012)

    Article  CAS  Google Scholar 

  15. Liu, M., Saman, W., Bruno, F.: Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sust. Energy Rev. 16, 2118–2132 (2012)

    Article  CAS  Google Scholar 

  16. Fernandes, D., Pitié, F., Cáceres, G., Baeyens, J.: Thermal energy storage: “How previous findings determine current research priorities”. Energy 39, 246–257 (2012)

    Article  CAS  Google Scholar 

  17. DeLaquil, P., Kelly, B., Lessley, R.: Solar one conversion project. Sol. Energy Mater. 24, 151–161 (1991)

    Article  CAS  Google Scholar 

  18. Herrmann, U., Kearney, D.W.: Survey of thermal energy storage for parabolic trough power plants. ASME J. Sol. Energy Eng. 124, 145–152 (2002)

    Article  Google Scholar 

  19. Steinmann, W.D., Eck, M.: Buffer storage for direct steam generation. Sol. Energy 80, 1277–1282 (2006)

    Article  CAS  Google Scholar 

  20. Tamme, R., Laing, D., Steinmann, W.D.: Advanced thermal energy storage technology for parabolic trough. ASME J. Sol. Energy Eng. 126, 794–800 (2004)

    Article  Google Scholar 

  21. Watanabe, T., Kikuchi, H., Kanzawa, A.: Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures. Heat Rec. Syst. CHP 13, 57–66 (1993)

    Article  CAS  Google Scholar 

  22. Lovegrove, K., Luzzi, A., Soldiani, I., Kreetz, H.: Developing ammonia based thermochemical energy storage for dish power plants. Sol. Energy 76, 331–337 (2004)

    Article  CAS  Google Scholar 

  23. Meier, A., Winkler, C., Wuillemin, D.: Experiment for modelling high temperature rock bed storage. Sol. Energy Mater. 24, 255–264 (1991)

    Article  CAS  Google Scholar 

  24. Bader, R., Pedretti, A., Steinfeld, A.: A 9-m-aperture solar parabolic trough concentrator based on a multilayer polymer mirror membrane mounted on a concrete structure. ASME J. Sol. Energy Eng. 133, 031016 (2011)

    Article  Google Scholar 

  25. Coutier, J.P., Farber, E.A.: Two applications of a numerical approach of heat transfer process within rock beds. Sol. Energy 29, 451–462 (1982)

    Article  Google Scholar 

  26. Schumann, T.E.W.: A liquid flowing through a porous prism. J. Franklin Inst. 28, 405–416 (1929)

    Article  Google Scholar 

  27. Klinkenberg, A.: Numerical evaluation of equations describing transient heat and mass transfer in packed solids. Ind. Eng. Chem. 40, 1992–1994 (1948)

    Article  CAS  Google Scholar 

  28. Ledoux, E.: Dynamic cooling at absorbent beds. Ind. Eng. Chem. 40, 1970–1975 (1948)

    Article  CAS  Google Scholar 

  29. Larsen, F.W.: Rapid calculation of temperature in a regenerative exchanger having arbitrary initial solid and fluid temperatures. Int. J. Heat Mass Transfer 10, 149–168 (1967)

    Article  CAS  Google Scholar 

  30. Duffie, J.A., Beckman, W.A.: Solar energy thermal processes. Wiley, New York (1974)

    Google Scholar 

  31. Klein, S.A.: Mathematical models at thermal storage. Proceedings of solar energy storage subsystems for the heating and cooling of building, pp. 119–128 (1975)

    Google Scholar 

  32. Mumma, S.A., Marvin W.C.: A method of simulating the performance of a pebble bed thermal energy storage and recovery system. ASME-AICHE heat transfer conference 1986, St. Louis, paper 76 -HT-73 (1976)

    Google Scholar 

  33. Saez, A.E., McCoy, B.J.: Dynamic response of a packed bed thermal storage system-a model for solar air heating. Sol. Energy 29, 201–206 (1982)

    Article  Google Scholar 

  34. Dincer, I., Dost, S., Li, X.: Performance analysis of sensible heat storage systems for thermal applications. Int. J. Energy Res. 21, 1171–1257 (1997)

    Google Scholar 

  35. Fath, H.E.: Technical assessment of solar thermal energy storage technologies. Renew. Energy 14, 35–40 (1998)

    Article  Google Scholar 

  36. Ismail, K.A.R., Stuginsky Jr, R.: A parametric study on possible fixed bed models for PCM and sensible heat storage. Appl. Thermal Eng. 19, 757–788 (1999)

    Article  Google Scholar 

  37. Crandall, D., Thacher, E.: Segmented thermal storage. Sol. Energy 77, 435–440 (2004)

    Article  Google Scholar 

  38. Singh, R., Saini, R.P., Saini, J.S.: Nusselt number and friction factor correlations for packed bed solar energy storage system having large sized elements of different shapes. Sol. Energy 80, 760–771 (2006)

    Article  CAS  Google Scholar 

  39. Singh, C., Tathgir, R.G., Muralidhar, K.: Energy storage in fluid saturated porous media subjected to oscillatory flow. Heat Mass Transfer 45, 427–441 (2009)

    Article  Google Scholar 

  40. Andreozzi, A., Buonomo, B., Dongiacomo, V., Manca, O., Mesolella P.: Numerical analysis on different sensible thermal energy storage component in high temperature solar systems. Proceedings of heat-SET conference on heat transfer in components and systems for sustainable energy technologies, pp. 21–29, Opatija, Croatia, Edition GRETh, France, 20–21 Oct 2010

    Google Scholar 

  41. Lu, T.J.: Heat transfer efficiency of metal honeycombs. Int. J. Heat Mass Transfer 42, 2031–2040 (1998)

    Article  Google Scholar 

  42. Rafidi, N., Blasiak, W.: Thermal performance analysis on a two composite material honeycomb heat regenerators used for HiTAC burners. App. Thermal Eng. 25, 2966–2982 (2005)

    Article  CAS  Google Scholar 

  43. Tescari, S., Neveu, P., Mazet, N.: Thermochemical solar reactor: Simplified method for the geometrical optimization at a given incident flux. Int. J. Chem. Reactor Eng. 8, art. no. A24 (2010)

    Google Scholar 

  44. Luo, X., Liu, Y., Liu, W.: A honeycomb microchannel cooling system for microelectronics cooling. Heat Transfer Eng. 32, 616–623 (2011)

    Article  CAS  Google Scholar 

  45. Bhouri, M., Goyette, J., Hardy, B.J., Anton, D.L.: Honeycomb metallic structure for improving heat exchange in hydrogen storage system. Int. J. Hydrogen Energy 36, 6723–6738 (2011)

    Article  CAS  Google Scholar 

  46. Liu, Y., Chen, X., Liu, R.: Numerical simulation of heat transfer and gas flow characteristics in honeycomb ceramics. Adv. Mat. Res. 156–157, 984–987 (2011)

    Article  Google Scholar 

  47. Krishnan, S., Hernon, D., Hodes, M., Mullins, J., Lyons, A.M.: Design of complex structured monolithic heat sinks for enhanced air cooling. IEEE Trans. Comp. Packag. Manuf. Tech. 2(6111210), 266–277 (2012)

    Article  Google Scholar 

  48. Han, X.H., Wang, Q., Park, Y.G., T’Joen, C., Sommers, A., Jacobi, A.: A review of metal foam and metal matrix composites for heat exchangers and heat sinks. Heat Transfer Eng. 33, 991–1009 (2012)

    Article  CAS  Google Scholar 

  49. Dhall, A., Squier, G., Geremew, M., Wood, W.A., George, J., Datta, A.K.: Modeling of multiphase transport during drying of honeycomb ceramic substrates. Drying Tech. 30, 607–618 (2012)

    Article  CAS  Google Scholar 

  50. Andreozzi, A., Buonomo, B., Manca, O., Tamburrino, S.: Thermal energy storages analysis for high temperature in air solar systems, submitted to ASME J. Sol. Energy Eng. (2013)

    Google Scholar 

  51. Andreozzi, A., Buonomo, B., Manca, O., Mesolella, P., Tamburrino, S.: Numerical investigation on sensible thermal energy storage with porous media for high temperature solar systems. J. Physics: Conf. Series 395, paper no. 012150, doi:10.1088/1742-6596/395/1/012150 (2012)

  52. Vafai, K.: Handbook of Porous Media. Marcel Dekker, New York (2000)

    Book  Google Scholar 

  53. Jeng, T.M., Tzeng, S.C.: Numerical study of confined slot jet impinging on porous metallic foam heat sink. Int. J. Heat Mass Transfer 48, 4685–4694 (2005)

    Article  CAS  Google Scholar 

  54. Vafai, K.: Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 147, 233–259 (1984)

    Article  Google Scholar 

  55. Dullien, F.A.L.: Porous Media Fluid Transport and Pore Structure. Academic, San Diego (1979)

    Google Scholar 

  56. Vafai, K., Sozen, M.: Analysis of energy and momentum transport for fluid flow through a porous bed. ASME J. Heat Transfer 112, 690–699 (1990)

    Article  CAS  Google Scholar 

  57. Moreira, E.A., Innocentini, M.D.M., Coury, J.R.: Permeability of ceramic foams to compressible and incompressible flow. J. Eur. Ceram. Soc. 24, 3209–3218 (2004)

    Article  CAS  Google Scholar 

  58. Zhao, C.Y., Tassou, S.A., Lu, T.J.: Analytical considerations of thermal radiation in cellular metal foams with open cells. Int. J. Heat Mass Transfer 51, 929–940 (2008)

    Article  CAS  Google Scholar 

  59. Adebiyi, G.A., Hodge, B.K., Steele, W.G., Jalalzadeh-Aza, A., Nsofor, E.C.: Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase change storage material. ASME J. Energy Res. Tech. 118, 102–111 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by MIUR with Art. 12 D. M. 593/2000 Grandi Laboratori “EliosLab” and grant PRIN-2009KSSKL3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Andreozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andreozzi, A., Buonomo, B., Manca, O., Nardini, S., Tamburrino, S. (2013). Heat Transfer Behaviors of Thermal Energy Storages for High Temperature Solar Systems. In: Delgado, J. (eds) Industrial and Technological Applications of Transport in Porous Materials. Advanced Structured Materials, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37469-2_5

Download citation

Publish with us

Policies and ethics