Skip to main content

Learning Representative Nodes in Social Networks

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

We study the problem of identifying representative users in social networks from an information spreading perspective. While traditional network measures such as node degree and PageRank have been shown to work well for selecting seed users, the resulting nodes often have high neighbour overlap and thus are not optimal in terms of maximising spreading coverage. In this paper we extend a recently proposed statistical learning approach called skeleton learning (SKE) to graph datasets. The idea is to associate each node with a random representative node through Bayesian inference. By doing so, a prior distribution defined over the graph nodes emerges where representatives with high probabilities lie in key positions and are mutually exclusive, reducing neighbour overlap. Evaluation with information diffusion experiments on real scientific collaboration networks shows that seeds selected using SKE are more effective spreaders compared with those selected with traditional ranking algorithms and a state-of-the-art degree discount heuristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  2. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS 14, pp. 849–856. MIT Press (2002)

    Google Scholar 

  3. Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  4. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proc. SDM 2005, pp. 274–285 (2005)

    Google Scholar 

  5. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Google Scholar 

  6. Xu, K.S., Kliger, M., Chen, Y., Woolf, P.J., Hero III, A.O.: Revealing social networks of spammers through spectral clustering. In: Proc. ICC 2009, pp. 735–740 (2009)

    Google Scholar 

  7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  8. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and the TKC effect. Comput. Netw. 33(1-6), 387–401 (2000)

    Article  Google Scholar 

  10. Chung, F.R.K.: Spectral Graph Theory. Amer. Math. Soc. (1997)

    Google Scholar 

  11. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: Proc. ICML 2005, pp. 1036–1043 (2005)

    Google Scholar 

  12. Agarwal, A., Chakrabarti, S.: Learning random walks to rank nodes in graphs. In: Proc. ICML 2007, pp. 9–16 (2007)

    Google Scholar 

  13. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. SIGKDD 2001, pp. 57–66 (2001)

    Google Scholar 

  14. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proc. SIGKDD 2002, pp. 61–70 (2002)

    Google Scholar 

  15. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proc. SIGKDD 2003, pp. 137–146 (2003)

    Google Scholar 

  16. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  17. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Market. Lett. 12(3), 211–223 (2001)

    Article  Google Scholar 

  18. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proc. SIGKDD 2009, pp. 199–208 (2009)

    Google Scholar 

  19. Kitsak, M., Gallos, L., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H., Makse, H.: Identification of influential spreaders in complex networks. Nature Phys. 6(11), 889–893 (2010)

    Article  Google Scholar 

  20. Sun, K., Bruno, E., Marchand-Maillet, S.: Unsupervised skeleton learning for manifold denoising. In: Proc. ICPR 2012, pp. 2719–2722 (2012)

    Google Scholar 

  21. Hinton, G.E., Roweis, S.T.: Stochastic Neighbor Embedding. In: NIPS 15, pp. 833–840. MIT Press (2003)

    Google Scholar 

  22. Hein, M., Maier, M.: Manifold denoising. In: NIPS 19, pp. 561–568. MIT Press (2007)

    Google Scholar 

  23. Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proc. SIGKDD 2012, pp. 33–41 (2012)

    Google Scholar 

  24. Xu, L.: Learning algorithms for RBF functions and subspace based functions. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods and Techniques, pp. 60–94. IGI Global (2009)

    Google Scholar 

  25. Bottou, L.: Online algorithms and stochastic approximations. In: Online Learning and Neural Networks. Cambridge University Press (1998)

    Google Scholar 

  26. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6(8), e23176 (2011)

    Article  Google Scholar 

  27. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proc. WSDM 2011, pp. 635–644 (2011)

    Google Scholar 

  28. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PLoS ONE 6(4), e18961 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, K., Morrison, D., Bruno, E., Marchand-Maillet, S. (2013). Learning Representative Nodes in Social Networks. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics