Skip to main content

Histogram of Oriented Normal Vectors for Object Recognition with a Depth Sensor

  • Conference paper
Book cover Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

Abstract

We propose a feature, the Histogram of Oriented Normal Vectors (HONV), designed specifically to capture local geometric characteristics for object recognition with a depth sensor. Through our derivation, the normal vector orientation represented as an ordered pair of azimuthal angle and zenith angle can be easily computed from the gradients of the depth image. We form the HONV as a concatenation of local histograms of azimuthal angle and zenith angle. Since the HONV is inherently the local distribution of the tangent plane orientation of an object surface, we use it as a feature for object detection/classification tasks. The object detection experiments on the standard RGB-D dataset [1] and a self-collected Chair-D dataset show that the HONV significantly outperforms traditional features such as HOG on the depth image and HOG on the intensity image, with an improvement of 11.6% in average precision. For object classification, the HONV achieved 5.0% improvement over state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: International Conference on Robotics and Automation (2011)

    Google Scholar 

  2. Microsoft Corp., http://www.xbox.com/en-US/kinect

  3. PrimeSense Corp., http://www.primesense.com/

  4. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  5. Ikemura, S., Fujiyoshi, H.: Real-Time Human Detection Using Relational Depth Similarity Features. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 25–38. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Xia, L., Chen, C.C., Aggarwal, J.K.: Human detection using depth information by kinect. In: Workshop on Human Activity Understanding from 3D Data in conjunction with IEEE Conference on Computer Vision and Pattern Recognition, HAU3D (2011)

    Google Scholar 

  7. Bo, L., Ren, X., Fox, D.: Depth kernel descriptors for object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  8. Bo, L., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  9. Lai, K., Bo, L., Ren, X., Fox, D.: Sparse distance learning for object recognition combining rgb and depth information. In: International Conference on Robotics and Automation (2011)

    Google Scholar 

  10. Ding, H., Moutarde, F., Shaiek, A.: 3d object recognition and person facial identification using time-averaged single-views from time-of-flight 3d depth-camera. In: Eurographics Workshop on 3D Object Retrieval (2010)

    Google Scholar 

  11. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time signal processing, 2nd edn. Prentice-Hall, Inc. (1999)

    Google Scholar 

  12. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: IEEE Conference on Computer Vision and Pattern Recognition (1997)

    Google Scholar 

  13. Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision (2002)

    Google Scholar 

  14. Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision (1999)

    Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  16. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  17. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Zhu, Q., Avidan, S., Chen Yeh, M., Ting Cheng, K.: Fast human detection using a cascade of histograms of oriented gradients. In: IEEE Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  19. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D.: Cascade object detection with deformable part models. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  20. Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  22. Sabata, B., Arman, F., Aggarwal, J.K.: Segmentation of 3d range images using pyramidal data structures. CVGIP: Image Underst. 57, 373–387 (1993)

    Article  Google Scholar 

  23. Vemuri, B.C., Mitiche, A., Aggarwal, J.K.: Curvature-based representation of objects from range data. Image Vision Comput. 4, 107–114 (1986)

    Article  Google Scholar 

  24. Zhu, Y., Fujimura, K.: 3d head pose estimation with optical flow and depth constraints. 3D Digital Imaging and Modeling (2003)

    Google Scholar 

  25. Ess, A., Leibe, B., Gool, L.V.: Depth and appearance for mobile scene analysis. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  26. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. TPAMI (1999)

    Google Scholar 

  27. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  28. Cai, Q., Gallup, D., Zhang, C., Zhang, Z.: 3D Deformable Face Tracking with a Commodity Depth Camera. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 229–242. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgbd mapping: Using depth cameras for dense 3d modeling of indoor environments. In: RGB-D: Advanced Reasoning with Depth Cameras Workshop in Conjunction with RSS (2010)

    Google Scholar 

  30. Du, H., Henry, P., Ren, X., Cheng, M., Goldman, D.B., Seitz, S.M., Fox, D.: Interactive 3d modeling of indoor environments with a consumer depth camera. In: ACM International Conference on Ubiquitous Computing (2011)

    Google Scholar 

  31. Herbst, E., Ren, X., Fox, D.: Rgb-d object discovery via multi-scene analysis. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  32. Yu, K., Zhang, T.: Improved local coordinate coding using local tangents. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010 (2010)

    Google Scholar 

  33. Yu, K., Zhang, T., Gong, Y.: Nonlinear learning using local coordinate coding. In: Advances in Neural Information Processing Systems, vol. 22, pp. 2223–2231 (2009)

    Google Scholar 

  34. Xu, D., Xu, W.: Description and recognition of object contours using arc length and tangent orientation. Pattern Recognition Letters, 855–864 (2005)

    Google Scholar 

  35. Joachims, T.: Making large-scale svm learning practical. LS8-Report 24, Universität Dortmund, LS VIII-Report (1998)

    Google Scholar 

  36. Cheng, Y.: Mean shift, mode seeking, and clustering. TPAMI 17 (1995)

    Google Scholar 

  37. Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

  38. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. International Journal of Computer Vision 88, 303–338 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, S. et al. (2013). Histogram of Oriented Normal Vectors for Object Recognition with a Depth Sensor. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics