Skip to main content

Action Recognition Using Canonical Correlation Kernels

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

In this paper, we propose the canonical correlation kernel (CCK), that seamlessly integrates the advantages of lower dimensional representation of videos with a discriminative classifier like SVM. In the process of defining the kernel, we learn a low-dimensional (linear as well as nonlinear) representation of the video data, which is originally represented as a tensor. We densely compute features at single (or two) frame level, and avoid any explicit tracking. Tensor representation provides the holistic view of the video data, which is the starting point of computing the CCK. Our kernel is defined in terms of the principal angles between the lower dimensional representations of the tensor, and captures the similarity of two videos in an efficient manner. We test our approach on four public data sets and demonstrate consistent superior results over the state of the art methods, including those that use canonical correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akae, N., Mansur, A., Makihara, Y., Yagi, Y.: Video from nearly still: an application to low frame-rate gait recognition. In: CVPR, pp. 1537–1543 (2012)

    Google Scholar 

  2. Bjorck, A., Golub, G.H.: Numerical methods for computing angles between linear subspaces. Mathematics of Computation 27(123), 579–594 (1973)

    Article  MathSciNet  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  4. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Machine Learning, 131–159 (2002)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (1), pp. 886–893 (2005)

    Google Scholar 

  6. Dalal, N., Triggs, B., Schmid, C.: Human Detection Using Oriented Histograms of Flow and Appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Gehler, P., Nowozin, S.: Infinite kernel learning. In: Proceedings of NIPS 2008 Workshop on ”Kernel Learning: Automatic Selection of Optimal Kernels” (2008)

    Google Scholar 

  8. Ikizler-Cinbis, N., Sclaroff, S.: Object, Scene and Actions: Combining Multiple Features for Human Action Recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 494–507. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Kim, T.K., Wong, S.F., Cipolla, R.: Tensor canonical correlation analysis for action classification. In: CVPR (2007)

    Google Scholar 

  10. Kim, T.-K., Cipolla, R.: Gesture Recognition Under Small Sample Size. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 335–344. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kellokumpu, V., Zhao, G., Pietikainen, M.: Human activity recognition using a dynamic texture based method. In: BMVC (2008)

    Google Scholar 

  12. Kim, T.K., Cipolla, R.: Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Trans. Pattern Anal. Mach. Intell., 1415–1428 (2009)

    Google Scholar 

  13. Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Muller, K.R., Zien, A.: Efficient and accurate lp-norm multiple kernel learning. In: NIPS, pp. 997–1005 (2009)

    Google Scholar 

  14. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)

    Google Scholar 

  15. Lui, Y.M., Beveridge, J.R.: Tangent bundle for human action recognition. In: FG, pp. 97–102 (2011)

    Google Scholar 

  16. Lui, Y.M., Beveridge, J.R., Kirby, M.: Action classification on product manifolds. In: CVPR, pp. 833–839 (2010)

    Google Scholar 

  17. Lanckriet, G.R.G., Cristianini, N., Bartlett, P.L., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 27–72 (2004)

    Google Scholar 

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)

    Google Scholar 

  19. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos. In: CVPR, pp. 1996–2003 (2009)

    Google Scholar 

  20. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatiotemporal features for action recognition with independent subspace analysis. In: CVPR, pp. 3361–3368 (2011)

    Google Scholar 

  21. Messing, R., Pal, C., Kautz, H.A.: Activity recognition using the velocity histories of tracked keypoints. In: ICCV, pp. 104–111 (2009)

    Google Scholar 

  22. Matikainen, P., Hebert, M., Sukthankar, R.: Trajectons: Action recognition through the motion analysis of tracked features. In: Workshop on Video-Oriented Object and Event Classification, ICCV (2009)

    Google Scholar 

  23. Nowak, E., Jurie, F., Triggs, B.: Sampling Strategies for Bag-of-Features Image Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Rodriguez, M., Ahmed, J., Shah, M.: Action mach: A spatiotemporal maximum average correlation height filter for action recognition. In: CVPR (2008)

    Google Scholar 

  25. Sun, J., Wu, X., Yan, S., Cheong, L.F., Chua, T.S., Li, J.: Hierarchical spatiotemporal context modeling for action recognition. In: CVPR, pp. 2004–2011 (2009)

    Google Scholar 

  26. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local svm approach. In: ICPR, pp. 32–36 (2004)

    Google Scholar 

  27. Ullah, M.M., Parizi, S.N., Laptev, I.: Improving bag-of-features action recognition with non-local cues. In: BMVC, pp. 1–11 (2010)

    Google Scholar 

  28. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR, pp. 3169–3176 (2011)

    Google Scholar 

  29. Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: BMVC (2009)

    Google Scholar 

  30. Wang, J., Chen, Z., Wu, Y.: Action recognition with multiscale spatio-temporal contexts. In: CVPR, pp. 3185–3192 (2011)

    Google Scholar 

  31. Wolf, L., Shashua, A.: Kernel principal angles for classification machines with applications to image sequence interpretation. In: CVPR, pp. 635–642 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagendar, G., Ganesh Bandiatmakuri, S., Goud Tandarpally, M., Jawahar, C.V. (2013). Action Recognition Using Canonical Correlation Kernels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics