Skip to main content

Image Super-Resolution: Use of Self-learning and Gabor Prior

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

Recent approaches on single image super-resolution (SR) have attempted to exploit self-similarity to avoid the use of multiple images. In this paper, we propose an SR method based on self-learning and Gabor prior. Given a low resolution (LR) test image I 0 and its coarser resolution version I − 1, both captured from the same camera, we first estimate the degradation between LR and HR (I 1) images by constructing the LR-HR patches from LR test image, I 0. The HR patches are obtained from I 0 by searching for similar patches (of I 0) of the same size in I − 1. A nearest neighbor search is used to find the best LR match which is then used to obtain the parent HR patch from I 0. All such LR-HR patches form self-learned dictionaries. The HR patches that do not find LR match in I − 1 are estimated using self-learned dictionaries constructed from the already found LR-HR patches. A compressive sensing-based method is used to obtain the missing HR patches. The estimated LR-HR pairs are used to obtain the LR image formation model by computing the degradation for each pair. A new prior, called Gabor Prior, based on the outputs of a Gabor filter bank is proposed that restricts the solution space by imposing the condition of preserving the SR features at different frequencies. The experimental results show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tian, J., Ma, K.K.: A survey on super-resolution imaging. Signal, Image and Video Processing 5, 329–342 (2011)

    Article  Google Scholar 

  2. Huang, T.S., Tsai, R.Y.: Multi-frame image restoration and registration. Advances in Computer Vision and Image Processing 1, 317–339 (1984)

    Google Scholar 

  3. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graphical Model and Image Process 53, 231–239 (1991)

    Article  Google Scholar 

  4. Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Fast and robust multi-frame super-resolution. IEEE Transactions on Image Processing 13, 1327–1344 (2004)

    Article  Google Scholar 

  5. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22, 56–65 (2002)

    Article  Google Scholar 

  6. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Transactions on Image Processing 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  7. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV, pp. 349–356 (2009)

    Google Scholar 

  8. Zitová, B., Flusser, J.: Image registration methods: A survey. Image and Vision Computing 21, 977–1000 (2003)

    Article  Google Scholar 

  9. Ur, H., Gross, D.: Improved resolution from subpixel shifted pictures. CVGIP: Graphical Model and Image Process 54, 181–186 (1992)

    Article  Google Scholar 

  10. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167–1183 (2002)

    Article  Google Scholar 

  11. Lin, Z., Shum, H.Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Transactions on PAMI 26, 83–97 (2004)

    Article  Google Scholar 

  12. Fattal, R.: Image upsampling via imposed edge statistics. ACM Transactions on Graphics 26, 95 (2007)

    Article  Google Scholar 

  13. Sun, J., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. Computer Vision and Pattern Recognition, 1–8 (2008)

    Google Scholar 

  14. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Transactions on Graphics 28, 1–10 (2010)

    Google Scholar 

  15. Gajjar, P., Joshi, M.: New learning based super-resolution: Use of dwt and igmrf prior. IEEE Trans. on Img. Process. 19, 1201–1213 (2010)

    Article  MathSciNet  Google Scholar 

  16. Ruderman, D.L., Bialek, W.: Statistics of natural images: Scaling in the woods. Physical Review Letters 73, 814–817 (1994)

    Article  Google Scholar 

  17. Turiel, A., Mato, G., Parga, N., Pierre Nadal, J.: The self-similarity properties of natural images resemble those of turbulent flows. Physical Review Letters 80, 1098–1101 (1998)

    Article  Google Scholar 

  18. Luong, H.Q., Ruzic, T., Pižurica, A., Philips, W.: Single-image super-resolution using sparsity constraints and non-local similarities at multiple resolution scales. In: Proc. SPIE, vol. 7723, pp. 2861–2873 (2010)

    Google Scholar 

  19. Lu, X., Yuan, H., Yuan, Y., Yan, P., Li, L., Li, X.: Local learning-based image super-resolution. In: MMSP, pp. 1–5 (2011)

    Google Scholar 

  20. Donoho, D.L.: Compressed sensing. IEEE Transactions on Information Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  21. Candes, E.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346, 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: SODA, pp. 271–280 (1993)

    Google Scholar 

  23. Petkov, N.: Biologically motivated computationally intensive approaches to image pattern recognition. Future Generation Computer Systems 11, 451–465 (1995)

    Article  Google Scholar 

  24. Hardie, R.C., Barnard, K.J., Armstrong, E.E.: Joint map registration and high-resolution image estimation using a sequence of undersampled images. IEEE Transactions on Image Processing 6, 1621–1633 (1997)

    Article  Google Scholar 

  25. Tian, J., Ma, K.K.: Stochastic super-resolution image reconstruction. Journal of Visual Communication and Image Represention 21, 232–244 (2010)

    Article  Google Scholar 

  26. van Ouwerkerk, J.D.: Image super-resolution survey. Image and Vision Computing 24, 1039–1052 (2006)

    Article  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612 (2004)

    Article  Google Scholar 

  28. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing 20, 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khatri, N., Joshi, M.V. (2013). Image Super-Resolution: Use of Self-learning and Gabor Prior. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics