Skip to main content

Observation-Driven Adaptive Differential Evolution for Robust Bronchoscope 3-D Motion Tracking

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

This paper proposes an observation-driven adaptive differential evolution (OADE) algorithm for accurate and robust bronchoscope 3-dimensional (3-D) motion tracking during electromagnetically navigated bronchoscopy. Two advantages of our framework are distinguished from any other adaptive differential evolution methods: (1) current observation information including sensor measurement and video image is used in the mutation equation and the selection function, respectively, and (2) the mutation factors and crossover rate are adaptively determined in terms of current image information. From experimental results, our OADE method was demonstrated to be an effective and promising tracking scheme. Our approach can reduce the tracking position error from 3.9 to 2.8 mm, as well as the position smoothness from 4.2 to 1.4 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deligianni, F., et al.: Nonrigid 2-D/3-D registration for patient specific bronchoscopy simulation with statistical shape modeling: Phantom validation. IEEE TMI 25, 1462–1471 (2006)

    Google Scholar 

  2. Helferty, J., et al.: Computer-based system for the virtual-endoscopic guidance of bronchoscopy. CVIU 108, 171–187 (2007)

    Google Scholar 

  3. Deguchi, D., et al.: Selective image similarity measure for bronchoscope tracking based on image registration. Media 13, 621–633 (2009)

    Google Scholar 

  4. Luo, X., et al.: Development and comparison of new hybrid motion tracking for bronchoscopic navigation. Media 16, 577–596 (2012)

    Google Scholar 

  5. Mori, K., Deguchi, D., Akiyama, K., Kitasaka, T., Maurer Jr., C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Hybrid Bronchoscope Tracking Using a Magnetic Tracking Sensor and Image Registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 543–550. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Gergel, I., et al.: Particle filtering for respiratory motion compensation during navigated bronchoscopy. In: Proc. SPIE MI 2010, vol. 7625, p. 76250W (2010)

    Google Scholar 

  7. Soper, T.D., et al.: In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE TBME 57, 736–745 (2010)

    Google Scholar 

  8. Luó, X., Reichl, T., Feuerstein, M., Kitasaka, T., Mori, K.: Modified Hybrid Bronchoscope Tracking Based on Sequential Monte Carlo Sampler: Dynamic Phantom Validation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 409–421. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Schwarz, Y., et al.: Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest 129, 988–994 (2006)

    Article  Google Scholar 

  10. Storn, R., Price, K.V.: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S., et al.: Differential evolution: A survey of the state-of-the-art. IEEE TEC 15, 4–31 (2011)

    Google Scholar 

  12. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput.: Fusion Found., Methodologies Applicat. 9, 448–462 (2005)

    MATH  Google Scholar 

  13. Brest, J., et al.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE TEC 10, 646–657 (2006)

    Google Scholar 

  14. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Comput.: Fusion Found., Methodologies Applicat. 10, 673–686 (2006)

    Google Scholar 

  15. Qin, A.K., et al.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE TEC 13, 398–417 (2009)

    Google Scholar 

  16. Zhang, J., Sanderson, A.C.: JADE: Adaptive differential evolution with optional external archive. IEEE TEC 13, 945–958 (2009)

    Google Scholar 

  17. Doucet, A., et al.: On sequential Monte Carlo sampling methods for bayesian filtering. Statistics and Computing 10, 197–208 (2000)

    Article  Google Scholar 

  18. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: A practical approach to global optimization. Springer, New York (2005)

    MATH  Google Scholar 

  19. Mezura-Montes, E., et al.: Modified differential evolution for constrained optimization. In: Proc. IEEE Congr. Evol. Comput., pp. 25–32 (2006)

    Google Scholar 

  20. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Processing Letters 9, 81–84 (2002)

    Article  Google Scholar 

  21. Lacroute, P.: Real-time volume rendering on shared memory multiprocessors using the shear-warp factorization. In: Proc. IEEE Sym. on Para. Ren., pp. 15–22 (1995)

    Google Scholar 

  22. Luo, X., et al.: Towards hybrid bronchoscope tracking under respiratory motion: evaluation on a dynamic motion phantom. In: Proc. SPIE MI 2010, vol. 7625, p. 76251B (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, X., Mori, K. (2013). Observation-Driven Adaptive Differential Evolution for Robust Bronchoscope 3-D Motion Tracking. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics