Skip to main content

Radio Tomographic Imaging for Ambient Assisted Living

  • Conference paper
Evaluating AAL Systems Through Competitive Benchmarking (EvAAL 2012)

Abstract

Accurate localization of people in indoor and domestic environments is one of the key requirements for ambient assisted living (AAL) systems. This chapter describes how the received signal strength (RSS) measurements collected by a network of static radio transceivers can be used to localize people without requiring them to wear or carry any radio device. We describe a technique named radio tomographic imaging (RTI), which produces real-time images of the change in the radio propagation field of the monitored area caused by the presence of people. People’s locations are inferred from the estimated RTI images. We show results from a long-term deployment in a typical single floor, one bedroom apartment. In order to deal with the dynamic nature of the domestic environment, we introduce methods to make the RTI system self-calibrating. Experimental results show that the average localization error of the system is 0.23 m. Moreover, the system is capable of adapting to the changes in the indoor environment, achieving high localization accuracy over an extended period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bultitude, R.J.: Measurement, characterization, and modeling of indoor 800/900 MHz radio channels for digital communications. IEEE Communications 25(6), 512 (1987)

    Article  Google Scholar 

  2. Hashemi, H.: A Study of Temporal and Spatial Variations of the Indoor Radio Propagation Channel. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 127–134 (1994)

    Google Scholar 

  3. Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Upper Saddle River (2001)

    Google Scholar 

  4. Liberti, J.C., Rappaport, T.S.: A Geometrically Based Model for Line-of-Sight Multipath Radio Channels. In: 46th IEEE Vehicular Technology Conference, vol. 5, pp. 844–848 (1996)

    Google Scholar 

  5. Molisch, A.: Wireless Communications, 2nd edn. John Wiley & Sons Ltd. (2011)

    Google Scholar 

  6. Nørklit, O., Andersen, J.B.: Diffuse Channel Model and Experimental Results for Array Antennas in Mobile Environments. IEEE Transactions on Antennas and Propagation 46(6), 834–840 (1998)

    Article  Google Scholar 

  7. Hashemi, H.: The indoor radio propagation channel. Proceedings of the IEEE 81(7), 943–968 (1993)

    Article  Google Scholar 

  8. Ghaddar, M., Talbi, L., Denidni, T.: Human Body Modelling for Prediction of Effect of People on Indoor Propagation Channel. Electronics Letters 40, 25 (2004)

    Article  Google Scholar 

  9. Wilson, J., Patwari, N.: See-Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks. IEEE Transactions on Mobile Computing 10(5), 612–621 (2011)

    Article  Google Scholar 

  10. Woyach, K., Puccinelli, D., Haenggi, M.: Sensorless Sensing in Wireless Networks: Implementation and Measurements. In: 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (2006)

    Google Scholar 

  11. Patwari, N., Agrawal, P.: Effects of Correlated Shadowing: Connectivity, Localization, and RF Tomography. In: IEEE/ACM International Conference on Information Processing in Sensor Networks, pp. 82–93 (2008)

    Google Scholar 

  12. Wilson, J., Patwari, N.: Radio Tomographic Imaging With Wireless Networks. IEEE Transactions on Mobile Computing 9(5), 621–632 (2010)

    Article  Google Scholar 

  13. Kanso, M.A., Rabbat, M.G.: Compressed RF Tomography for Wireless Sensor Networks: Centralized and Decentralized Approaches. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, pp. 173–186. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Chen, X., Edelstein, A., Li, Y., Coates, M., Rabbat, M., Aidong, M.: Sequential Monte Carlo for Simultaneous Passive Device-free Tracking and Sensor Localization Using Received Signal Strength Measurements. In: ACM/IEEE Information Processing in Sensor Networks (2011)

    Google Scholar 

  15. Kaltiokallio, O., Bocca, M.: Real-Time Intrusion Detection and Tracking in Indoor Environment Through Distributed RSSI Processing. In: 17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 61–70 (2011)

    Google Scholar 

  16. Kaltiokallio, O., Bocca, M., Patwari, N.: Enhancing the Accuracy of Radio Tomographic Imaging Using Channel Diversity. In: 9th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (2012)

    Google Scholar 

  17. Zhang, D., Liu, Y., Ni, L.: Rass: A Real-Time, Accurate and Scalable System for Tracking Transceiver-Free Objects. In: IEEE International Conference on Pervasive Computing and Communications, pp, pp. 197–204 (2011)

    Google Scholar 

  18. Patwari, N., Wilson, J.: RF Sensor Networks for Device-Free Localization and Tracking. Proceedings of the IEEE 98(11), 1961–1973 (2010)

    Article  Google Scholar 

  19. Li, Q., Stankovic, J.A., Hanson, M.A., Barth, A.T., Lach, J., Zhou, G.: Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer Derived Posture Information. In: 6th International Workshop on Wearable and Implantable Body Sensor Networks, pp. 138–143 (2009)

    Google Scholar 

  20. Anderson, D., Keller, J., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: 28th International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6388–6391 (2006)

    Google Scholar 

  21. Bahl, P., Padmanabhan, V.: RADAR: an In-building RF-based User Location and Tracking System. In: 19th Conference of the IEEE Computer and Communication Societies, vol. 2, pp. 775–784 (2000)

    Google Scholar 

  22. Youssef, M., Mah, M., Agrawala, A.: Challenges: Device-Free Passive Localization for Wireless Environments. In: ACM International Conference on Mobile Computing and Networking, pp. 222–229 (2007)

    Google Scholar 

  23. Barsocchi, P., Lenzi, S., Chessa, S., Giunta, G.: A Novel Approach to Indoor RSSI Localization by Automatic Calibration of the Wireless Propagation Model. In: 69th IEEE Vehicular Technology Conference, pp. 1–5 (2009)

    Google Scholar 

  24. Viani, F., Rocca, P., Benedetti, M., Oliveri, G., Massa, A.: Electromagnetic Passive Localization and Tracking of Moving Targets in a WSN-Infrastructured Environment. Inverse Problems 26(7) (2010)

    Google Scholar 

  25. Wilson, J., Patwari, N.: A Fade-Level Skew-Laplace Signal Strength Model for Device-Free Localization with Wireless Networks. IEEE Transactions on Mobile Computing 11(6), 947–958 (2012)

    Article  Google Scholar 

  26. Baccour, N., Koubâa, A., Mottola, L., Zúñiga, M.A., Youssef, H., Boano, C.A., Alves, M.: Radio link quality estimation in wireless sensor networks: A survey. ACM Transactions on Sensor Networks 8(4), 1–34 (2012)

    Article  Google Scholar 

  27. Agrawal, P., Patwari, N.: Correlated Link Shadow Fading in Multi-hop Wireless Networks. IEEE Transsactions on Wireless Communications 8(8), 4024–4036 (2009)

    Article  Google Scholar 

  28. Zhao, Y., Patwari, N.: Demo Abstract: Histogram Distance-Based Radio Tomographic Localization. In: IEEE/ACM International Conference on Information Processing in Sensor Networks, pp. 129–130 (2012)

    Google Scholar 

  29. Phillips, J.M., Venkatasubramanian, S.: A Gentle Introduction to the Kernel Distance. Technical Report arXiv:1103.1625, Arxiv.org (2011)

    Google Scholar 

  30. Kaltiokallio, O., Bocca, M., Patwari, N.: Follow @Grandma: Long-Term Device-Free Localization for Residential Monitoring. In: 7th IEEE International Workshop on Practical Issues in Building Sensor Network Applications (2012)

    Google Scholar 

  31. Zhao, Y., Patwari, N.: Noise Reduction for Variance-Based Device-Free Localization and Tracking. In: 8th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 179–187 (2011)

    Google Scholar 

  32. Wilson, J., Patwari, N., Vasquez, F.G.: Regularization Methods for Radio Tomographic Imaging. In: Virginia Tech. Wireless Symposium (2009)

    Google Scholar 

  33. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME Journal of Basic Engineering (Series D) (82), 35–45 (1960)

    Google Scholar 

  34. Thouin, F., Nannuru, S., Coates, M.J.: Multi-target Tracking for Measurement Models with Additive Contributions. In: International Conference on Information Fusion (2011)

    Google Scholar 

  35. Nannuru, S., Li, Y., Zeng, Y., Coates, M., Yang, B.: Radio Frequency Tomography for Passive Indoor Multi-Target Tracking. IEEE Transactions on Mobile Computing (2012), http://doi.ieeecomputersociety.org/10.1109/TMC.2012.190

  36. Zheng, Y., Men, A.: Through-Wall Tracking with Radio Tomography Networks Using Foreground Detection. In: IEEE Wireless Communications and Networking Conference (2012)

    Google Scholar 

  37. Edelstein, A., Rabbat, M.: Background Subtraction for Online Calibration of RF Sensing Networks. IEEE Transactions on Mobile Computing (accepted September 2012)

    Google Scholar 

  38. Texas Instruments.: A USB-Enabled System-on-Chip Solution for 2.4GHz IEEE 802.15.4 and ZigBee Applications, http://www.ti.com/lit/ds/symlink/cc2531.pdf

  39. IEEE 802.15.4 Standard Technical Specifications, http://www.ieee802.org/15/pub/TG4Expert.html

  40. Texas Instruments.: Small Size 2.4 GHz PCB antenna. www.ti.com/lit/an/swra117d/swra117d.pdf

  41. Srinivasan, K., Dutta, P., Tavakoli, A., Levis, P.: Understanding the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor Networks. In: 4th ACM Conference on Embedded Networked Sensor Systems, pp. 419–420 (2006)

    Google Scholar 

  42. Xing, G., Sha, M., Huang, J., Zhou, G., Wang, X., Liu, S.: Multichannel Interference Measurement and Modeling in Low-Power Wireless Networks. In: IEEE Real-Time Systems Symposium, pp. 248–257 (2009)

    Google Scholar 

  43. Kaltiokallio, O.: Follow @Grandma: Long-term Device-Free Localization for Residential Monitoring (YouTube Video)., http://www.youtube.com/watch?v=XuMBRm6S_6g

  44. Lymberopoulos, D., Bamis, A., Savvides, A.: Extracting Spatiotemporal Human Activity Patterns in Assisted Living Using a Home Sensor Network. Universal Access in the Information Society 10(2), 125–138 (2011)

    Article  Google Scholar 

  45. Second EvAAL (Evaluating AAL Systems through Competitive Benchmarking) Competition, http://evaal.aaloa.org/2012/2012-competition

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bocca, M., Kaltiokallio, O., Patwari, N. (2013). Radio Tomographic Imaging for Ambient Assisted Living. In: Chessa, S., Knauth, S. (eds) Evaluating AAL Systems Through Competitive Benchmarking. EvAAL 2012. Communications in Computer and Information Science, vol 362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37419-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37419-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37418-0

  • Online ISBN: 978-3-642-37419-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics