Skip to main content

Mobile Anwendungen

  • Chapter
  • First Online:
Wasserstoff und Brennstoffzelle

Zusammenfassung

Der schonende Umgang mit Energieressourcen und die Reduktion von Schadstoffemissionen einschließlich Treibhausgasen sind nicht nur weltweit erwünscht, sondern wegen zunehmend schärferer gesetzlicher Vorgaben eine absolute Notwendigkeit. Das gilt sowohl für stationäre und portable Anwendungen als auch in Transport und Verkehr. Mittlerweile ist weltweit eine kontinuierlich schärfer werdende CO2-Gesetzgebung zu beobachten. Die Marktvorbereitung zur Einführung von Brennstoffzellenfahrzeugen auf der Straße muss synergetisch mit allen in die Thematik involvierten Gruppen (Automobilfirmen, Energie- und Ölfirmen, Infrastrukturunternehmen, Behörden und Regierungen) im Sinne einer Public-Private-Partnership erfolgen. Ein Wasserstoff-Brennstoffzellenfahrzeug hat nicht nur den Vorteil der lokalen CO2 Nullemissionen – sondern auch keine bzw. sehr geringe CO2-Emissionen bei der Herstellung des Treibstoffs. Die Brennstoffzellentechnologie wird analysiert und deren Anwendungsmöglichkeiten in Fahrzeugen diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur und Referenzen

  1. Deutsche Bundesregierung: Eckpunktepapier Beschluss (2011)

    Google Scholar 

  2. Berechnet mit TREMOD 5.25c, Trend-Szenario, Inlandsbilanz, Daimler

    Google Scholar 

  3. Stolten, D., Grube, T., Mergel, J.: Beitrag elektrochemischer Energietechnik zur Energiewende. VDI-Berichte Nr. 210, 2183 (2012)

    Google Scholar 

  4. http://www.arb.ca.gov/msprog/zevprog/zevprog.htm

  5. COM(2012) 393 final“Proposal for a regulation of the European Parliament and of the council amending regulation (EC) No 443/2009 to define the modalities for reaching the 2020 target to reduce CO2 emissions from new passenger cars“. European Commission, Brussels (2012)

    Google Scholar 

  6. http://ec.europa.eu/research/fch/pdf/a_portfolio_of_power_trains_for_europe_a_fact_based__analysis.pdf

  7. Erdölprognose IEA

    Google Scholar 

  8. Energy Watch Group. Wikipedia/Globales Ölfördermaximum

    Google Scholar 

  9. Auto Motor Sport – Sonderheft Edition Nr. 3, ISSN: 0940-3833

    Google Scholar 

  10. http://www.spiegel.de/auto/werkstatt/brennstoffzellen-marathon-opel-auf-tournee-a-297209.html. Zugegriffen: 30. Januar 2013

  11. http://www.scandinavianhydrogen.org/h2moves%5D/news/the-european-hydrogen-road-tour-kicks-off

  12. http://cafcp.org/

  13. http://www.cleanenergypartnership.de

  14. http://www.jari.or.jp/jhfc/e/index.html

  15. http://www.fch-ju.eu/

  16. http://www.forum-elektromobilitaet.de/flycms/de/web/232/-/NOW+-+Nationale+Organisation+Wasserstoff-+und+Brennstoffzellentechnologie.html

  17. Daimler Chrysler: Faszination Forschung – Drei Jahrzehnte Daimler-Benz Forschung, S. 44–49. ISBN 3-7977-0451-8

    Google Scholar 

  18. Povel, R., Töpler, J., Withalm, G., Halene, C.: Hydrogen drive in field testing. In: Proc. 5th World Hydr. En. Conf S. 1563–1577. Toronto (1984)

    Google Scholar 

  19. Eichleder, M.: Wasserstoff in der Fahrzeugtechnik.

    Google Scholar 

  20. JRC/EUCAR/CONCAWE: Well-to-Wheels Report (2004)

    Google Scholar 

  21. http://www.optiresource.org/en/home.html

  22. Specht, M., Sterner M.: Regeneratives Methan in einem künftigen Erneuerbare-Energie-System“. Vortrag Messe Stuttgart (11. Februar 2011)

    Google Scholar 

  23. WTT: LBST (2010) Assessment and documentation of selected aspects of transportation fuel pathways. TTW: EUCAR PISI (Port Injection Spark Ignition) CNG Fahrzeug für 2010, Daimler

    Google Scholar 

  24. Kramer, M.A., Heywood, J.B.: A comparative assessment of electric propulsion systems in the 2030 US light-duty vehicle fleet. Society Automotive Engineering 2008-01-0459

    Google Scholar 

  25. Mohrdieck, C., Schulze, H., Wöhr M.: Brennstoffzellenantriebsysteme. In: Braess, H.-H., Seiffert. U. (Hrsg.) Vieweg Handbuch für Kraftfahrzeugtechnik, 6. Aufl. (2011)

    Google Scholar 

  26. Wind, J., Prenninger, P., Essling, R.-P., Ravello, V., Corbet, A.: HYSYS Publishable Final Activity Report, Revision 0.2 (2012)

    Google Scholar 

  27. http://www.fch-ju.eu/sites/default/files/20121029%20Urban%20buses%2C%20alternative%20powertrains%20for%20Europe%20-%20Final%20report.pdf

  28. Kizaki, M. –Toyota: Development of new fuel cell system for mass production. EVS 26

    Google Scholar 

  29. Vielstich, W., Lamm, A., Gasteiger, H.A.: Handbook of Fuel Cells, Bd. 1, Chap. 4, S. 26ff. Wiley & Sons (2003)

    Google Scholar 

  30. Venturi, M., Sang J.: Air supply system for automotive fuel cell application. Society Automotive Engineering 2012-01-1225

    Google Scholar 

  31. Honda FCX with breakthrough fuel cell stack proves its coldStart performance capabilities in public test. Torrance, CA, February 27th (2004). http://world.honda.com/news/2004/4040227FCX/

  32. Manabe, K., Naganuma, Y., Nonobe, Y., Kizaki, M., Ogawa, Toyota: Development of fuel cell hybrid vehicle rapid start-up from sub-freezing temperatures. SAE 2010-01-1092

    Google Scholar 

  33. Ikezoe, K., Tabuchi, Y., Kagami, F., Nishimura, H.: Development of an FCV with a new FC stack for improved cold start capability. SAE 2010-01-1093

    Google Scholar 

  34. Lamm, A., et al.: Technical status and future prospectives for PEM fuel cell systems at DaimlerChrysler. EVS 21

    Google Scholar 

  35. FC Award 2007, f-cell Award Gold: NuCellSys GmbH, Zuverlässiger Gefrierstart eines Brennstoffzellensystems für den Pkw-Einsatz. www.f-cell.de/deutsch/award/preistraeger/jahr-2007

  36. Züttel, A., Borgschulte, A., Schlapbach, L. (Hsrg.): Hydrogen as a Future Energy Carrier. 1. Aufl. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  37. Maus, S.: Modellierung und Simulation der Betankung Fahrzeugbehältern mit komprimiertem Wasserstoff. Dissertation, VDI Fortschrittsberichte Reihe 3, Nr. 879 (2007)

    Google Scholar 

  38. Maus, S., Hapke, J., Ranong, C.N., Wüchner, E., Friedlmeier, G., Wenger, D.: Filling procedure for vehicles with compressed hydrogen tanks. http://www.elsevier.com

  39. Töpler, J., Feucht, K.: Results of a fleet test with metal hydride motor cars. Daimler-Benz AG, Stuttgart (1989)

    Google Scholar 

  40. Hovland, V., Pesaran, A., Mohring, R., Eason, I., Schaller, R., Tran, D., Smith,T., Smith G.: Water and heat balance in a fuel cell vehicle with a sodium borohydride hydrogen fuel processor. SAE Technical Paper 2003-01-2271

    Google Scholar 

  41. Wenger, D.: Metallhydridspeicher zur Wasserstoffversorgung und Kühlung von Brennstoffzellenfahrzeugen. Dissertation, Universität Ulm (2009)

    Google Scholar 

  42. Iijima, S.: Nature 354, 56–58 (1991)

    Google Scholar 

  43. Chambers, A., Park, C., Baker, R.T.K., Rodriguez, N.M.: J. Phys. Chem. B 102, 4253–4256 (1998)

    Article  Google Scholar 

  44. Hirscher, M.: Handbook of Hydrogen Storage: New Materials for Future Energy Storage. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  45. Broom, D.P.: Hydrogen Storage Materials: The Characterization of Their Storage Properties. Springer, London (2011)

    Book  Google Scholar 

  46. U.S. Department of Energy Hydrogen Program: Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications, October 30, 2006. Revised June 2008, Kircher, O., Brunner, T.: Advances in cryo-compressed hydrogen vehicle storage FISITA 2010. F2010-A-018

    Google Scholar 

  47. Verkehrswirtschaftliche Energiestrategie (VES): 3. Statusbericht der Task Force an das Steering Committee (August 2007)

    Google Scholar 

  48. Mohrdieck, C., Schamm, R., Zimmer, S.E., Nitsche C.: DaimlerChrysler’s Global Operations of Zero-Emission Vehicle Fleets. Convergence (2006)

    Google Scholar 

  49. Pressemitteilung Mercedes Benz: Eco-friendly Mercedes-Benz fuel cell buses at the World Economic Forum in Davos, January 23rd (2013)

    Google Scholar 

  50. http://www.fuelcellbus.com/

  51. http://www.fuelcells.org/wp-content/uploads/2012/02/fcbuses-world.pdf

  52. Omnibus Brasileiro a Hidrogenio: Brasilian fuel cell bus project. Launch event

    Google Scholar 

  53. Venturi, M., Martin, A.: Liquid fuelled APU fuel cell system for truck application. Society Automotive Engineering 2001-01-2716

    Google Scholar 

  54. Solid Oxide Fuel Cell Auxiliary Power Unit. Delphi Program Overview Essential Power Systems Workshop, December 12–13th (2001)

    Google Scholar 

  55. Venturi, M., Smith, S., Bell, S., Kallio, E.: Recent results on liquid fuelled APU for truck application. Society Automotive Engineering 2003-01-0266

    Google Scholar 

  56. Brodrick, C.J., et al.: Truck idling trends: results of a pilot Survey in Northern California. Society Automotive Engineering 2001-01-2828

    Google Scholar 

  57. Analysis of Technologies options to reduce the fuel consumption of idling trucks. Center for Transportation Research Argonne National Laboratory Operated by the University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy

    Google Scholar 

  58. Bodrick, C.J., et al.: Potential benefit of utilizing fuel cell auxiliary power units in lieu of heavy duty truck engine idling (November 2001)

    Google Scholar 

  59. The Maintenance Council (1995b): Analysis of cost from idling and parasitic devices for heavy duty truck. Recommended procedure. American Truck Association, Alexandria, VA

    Google Scholar 

  60. Venturi, M., zur Megede, D., Keppeler, B., Dobbs, H., Kallio, E.: Synthetic hydrocarbon fuel for APU application: the fuel processor system. Society Automotive Engineering 2003-01-0267

    Google Scholar 

  61. Lim, T., Venturi, M., Kallio, E.: Vibration and shock considerations in the design of a truck-mounted fuel cell APU system. Society Automotive Engineering 2002-01-3050

    Google Scholar 

  62. Gavalas, G.R., Moore, N.R., Voecks, G.E., et al.: Fuel cell locomotive development and demonstration program. Phase I: Systems. Final Report prepared for South Coast Air Quality Management District by Jet Propulsion Laboratory, California Institute of Technology

    Google Scholar 

  63. Pernicini, B., Steele, B., Venturi, M.: Feasibility study on fuel cell locomotive. European Commission DGXII. Contract n. JOE3-CT98-2002

    Google Scholar 

  64. The Hydrogen & Fuel Cell Letter – December 2012 Bd. XXVII/No.12 ISSN 1080-8019 (2012)

    Google Scholar 

  65. http://pinktentacle.com/2006/10/jr-tests-fuel-cell-hybrid-train/

  66. www.zemships.eu

  67. The Hydrogen & Fuel Cell Letter – January and August 2013 Bd. XXVIII/No. 2 ISSN 1080-8019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mohrdieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mohrdieck, C., Venturi, M., Breitrück, K., Schulze, H. (2014). Mobile Anwendungen. In: Töpler, J., Lehmann, J. (eds) Wasserstoff und Brennstoffzelle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37415-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37415-9_4

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37414-2

  • Online ISBN: 978-3-642-37415-9

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics