Block LBP Displacement Based Local Matching Approach for Human Face Recognition

  • Liang Chen
  • Ling Yan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7728)


A local matching approach, known as Electoral College, where each block contributes one single vote to the final decision, which is generated by a simply majority voting from all local binary decisions, has been proved to be stable for political elections as well as general pattern recognition. Given the registration difficulties caused by the non-rigidity of human face images, block LBP displacement is introduced so that an Electoral College, where a local decision is made on LBP statistics for each block, can be applied to face recognition problems. Extensive experiments are carried out and have demonstrated the outstanding performances of the block LBP displacement based Electoral College in comparison with the original LBP approach. It is expected and shown by experiments that the approach also applies to descriptor approaches other than LBP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, L., Tokuda, N.: Regional voting versus national voting –stability of regional voting (extended abstract). In: Int. ICSC Symposium on Advances in Intelligent Data Analysis, Rochester, New York, USA (1999)Google Scholar
  2. 2.
    Chen, L., Tokuda, N.: A general stability analysis on regional and national voting schemes against noise – why is an electoral college more stable than a direct popular election? Artificial Intelligence 163, 47–66 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, L.: Electoral college and direct popular vote for multi-candidate election. In: Proceedings of the British Machine Vision Conference, pp. 100.1–100.11. BMVA Press (2010), doi:10.5244/C.24Google Scholar
  4. 4.
    Chen, L., Tokuda, N.: A unified framework for improving the accuracy of all holistic face identification algorithms –electoral college for human face identification by computing machinery. Artificial Intelligence Review 33 (2010)Google Scholar
  5. 5.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Zou, J., Ji, Q., Nagy, G.: A comparative study of local matching approach for face recognition. IEEE Transactions on Image Processing 16, 2617–2628 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Phillips, P., Moon, H., Rizvi, S.A., Rauss, P.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Analysis & Machine Ingelligence 22, 1090–1104 (2000)CrossRefGoogle Scholar
  8. 8.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: Proc. of Computer Vision and Pattern Recognition, San Diego, vol. I, pp. 947–954 (2005)Google Scholar
  9. 9.
    Beveridge, J.R., She, K., Draper, B., Givens, G.H.: A nonparametric statistical comparison of principal component and linear discriminant subspaces for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 535–542 (2001)Google Scholar
  10. 10.
    Tan, X., Triggs, B.: Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 2037–2041 (2006)CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Shan, S., Gao, W., Chen, X.: Local gabor binary pattern histogram sequence (LGBPH): A novel non-statistical model for face representation and recognition. In: Proc. of Int. Conf. on Computer Vision. (2005) 786–791Google Scholar
  13. 13.
    Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. IEEE Transactions on Image Processing 16, 57–68 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, J., Chen, S., Zhou, Z.-H., Tan, X.: Single Image Subspace for Face Recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 205–219. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Schwartz, W.R., Guo, H., Davis, L.S.: A Robust and Scalable Approach to Face Identification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 476–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Holappa, J., Ahonen, T., Pietikainen, M.: An optimized illumination normalization method for face recognition. In: 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS 2008, pp. 1–6 (2008)Google Scholar
  17. 17.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)Google Scholar
  18. 18.
    Taigman, Y., Wolf, L., Hassner, T.: Multiple one-shots for utilizing class label information. In: The British Machine Vision Conference (BMVC), London (2009)Google Scholar
  19. 19.
    Seo, H., Milanfar, P.: Face verification using the lark representation. IEEE Transactions on Information Forensics and Security 6, 1275–1286 (2011)CrossRefGoogle Scholar
  20. 20.
    Ruiz-del Solar, J., Verschae, R., Correa, M.: Recognition of faces in unconstrained environments: A comparative study. EURASIP Journal on Advances in Signal Processing, Article ID 184617, 19 pages (2009)Google Scholar
  21. 21.
    Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Real-Life Images Workshop at the European Conference on Computer Vision, ECCV (2008)Google Scholar
  22. 22.
    Chen, L., Yan, L., Liu, Y., Gao, L., Zhang, X.: Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 214–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Nowak, E., Jurie, F.: Learning visual similarity measures for comparing never seen objects. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  24. 24.
    Huang, C., Zhu, S., Yu, K.: Large scale strongly supervised ensemble metric learning, with applications to face verification and retrieval. Technical Report TR115, NEC (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liang Chen
    • 1
  • Ling Yan
    • 1
  1. 1.University of Northern British ColumbiaPrince GeorgeCanada

Personalised recommendations