Advertisement

Dynamic Texture Synthesis in Space with a Spatio-temporal Descriptor

  • Rocio A. Lizarraga-Morales
  • Yimo Guo
  • Guoying Zhao
  • Matti Pietikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7728)

Abstract

Dynamic textures are image sequences recording texture in motion. Given a sample video, the goal of synthesis is to create a new sequence enlarged in spatial and/or temporal domain, which looks perceptually similar to the input. Most synthesis methods are mainly focused on extending sequences only in the temporal domain. In this paper, we propose a dynamic texture synthesis approach for spatial domain, where we aim to enlarge the frame size while preserving the aspect and motion of the original video. For this purpose, we use a patch-based synthesis method based on LBP-TOP features. In our approach, 3D patch regions from the input are selected and copied to an output sequence. Usually, in other patch-based approaches, the selection of the patches is based only in the color, which cannot capture the spatial and temporal information, causing an unnatural look in the output. In contrast, we propose to use the LBP-TOP operator, which implicitly represents information about appearance, dynamics and correlation between frames. The experiments show that the use of the LBP-TOP improves the performance of other methods giving a good description of the structure and motion of dynamic textures without generating visible discontinuities or artifacts.

Keywords

Local Binary Pattern Boundary Zone Texture Synthesis Dynamic Texture Video Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and texture movie synthesis using statistical learning. IEEE Trans. on Visualization and Computer Graphics 7, 120–135 (2001)CrossRefGoogle Scholar
  2. 2.
    Chetverikov, D., Peteri, R.: A brief survey of dynamic texture description and recognition. In: Proc. of the CORES 2005, vol. 30, pp. 17–26 (2005)Google Scholar
  3. 3.
    Constantini, R., Sbaiz, L., Susstrunk, S.: Higher order SVD analysis for dynamic texture synthesis. IEEE Trans. on Image Processing 17, 42–52 (2008)CrossRefGoogle Scholar
  4. 4.
    Doretto, G., Jones, E., Soatto, S.: Spatially Homogeneous Dynamic Textures. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 591–602. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Ghanem, B., Ahuja, N.: Phase PCA for dynamic texture video compression. In: Proc. of the IEEE ICIP 2007, vol. 3, pp. 425–428 (2007)Google Scholar
  6. 6.
    Guo, Y., Zhao, G., Chen, J., Pietikäinen, M., Xu, Z.: Dynamic texture synthesis using a spatial temporal descriptor. In: Proc. of the IEEE ICIP 2009, pp. 2277–2280 (2009)Google Scholar
  7. 7.
    Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: Image and video synthesis using graph cuts. ACM Trans. on Graphics 22, 277–286 (2003)CrossRefGoogle Scholar
  8. 8.
    Liu, C.B., Lin, R.S., Ahuja, N., Yang, M.H.: Dynamic textures synthesis as non- linear manifold learning and traversing. In: Proc. of the BMVC 2006, pp. 859–868 (2006)Google Scholar
  9. 9.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  10. 10.
    Peteri, R., Fazekas, S., Huiskes, M.J.: DynTex: A comprehensive database of dynamic textures. Pattern Recognition Letters 31, 1627–1632 (2010)CrossRefGoogle Scholar
  11. 11.
    Schodl, A., Szeliski, R., Salesin, D., Essa, I.: Video textures. In: Proc. of the ACM SIGGRAPH 2000, pp. 489–498 (2000)Google Scholar
  12. 12.
    Szeliski, R., Shum, H.Y.: Creating full view panoramic image mosaics and environment maps. In: Proc. of the ACM SIGGRAPH 1997, pp. 251–258 (1997)Google Scholar
  13. 13.
    Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in example-based texture synthesis. In: Eurographics 2009, EG-STAR, pp. 93–117 (2009)Google Scholar
  14. 14.
    Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proc. of the ACM SIGGRAPH 2000, pp. 479–488 (2000)Google Scholar
  15. 15.
    Yuan, L., Wen, F., Liu, C., Shum, H.-Y.: Synthesizing Dynamic Texture with Closed-Loop Linear Dynamic System. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 603–616. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. on Pattern Analysis and Machine Intelligence 29, 915–928 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rocio A. Lizarraga-Morales
    • 1
  • Yimo Guo
    • 2
  • Guoying Zhao
    • 2
  • Matti Pietikäinen
    • 2
  1. 1.DICISUniversidad de GuanajautoSalamancaMexico
  2. 2.Center for Machine Vision Research, Department of Electrical and Information EngineeringUniversity of OuluFinland

Personalised recommendations