Colorimetric Correction for Stereoscopic Camera Arrays

  • Clyde Mouffranc
  • Vincent Nozick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7728)


Colorimetric correction is a necessary task to generate comfortable stereoscopic images. This correction is usually performed with a 3D lookup table that can correct images in real-time and can deal with the non-independence of the colour channels. In this paper, we present a method to compute such 3D lookup table with a non-linear process that minimizes the colorimetric properties of the images. This lookup table is represented by a polynomial basis to reduce the number of required parameters. We also describe some optimizations to speedup the processing time.


Lookup Table Colour Channel Minimization Process Stereoscopic Image Color Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lambooij, M.T.M., IJsselsteijn, W.A., Heynderickx, I.: Visual discomfort in stereoscopic displays: a review. Stereoscopic Displays and Virtual Reality Systems XIV 6490 (2007)Google Scholar
  2. 2.
    Smolic, A., Müller, K., Stefanoski, N., Ostermann, J., Gotchev, A., Akar, G.B., Triantafyllidis, G.A., Koz, A.: Coding algorithms for 3dtv - a survey. IEEE Trans. Circuits Syst. Video Techn. 17, 1606–1621 (2007)CrossRefGoogle Scholar
  3. 3.
    Nozick, V., Saito, H.: Online Multiple View Computation for Autostereoscopic Display. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 399–412. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Joshi, N., Wilburn, B., Vaish, V., Levoy, M., Horowitz, M.: Automatic color calibration for large camera arrays. Technical report, UCSD CSE Tech Report CS2005-0821 (2005)Google Scholar
  5. 5.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21, 34–41 (2001)CrossRefGoogle Scholar
  6. 6.
    Papadakis, N., Edoardo, P., Caselles, V.: A variational model for histogram transfer of color images. IEEE Transactions on Image Processing 20, 1682–1695 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Morovic, J., Sun, P.: Accurate 3d image color histogram transformation. Pattern Recognition Letters 24, 1725–1735 (2003)CrossRefGoogle Scholar
  8. 8.
    Neumann, L., Neumann, A.: Color style transfer techniques using hue, lightness and saturation histogram matching. In: Proceedings of Computational Aesthetics in Graphics, Visualization and Imaging, pp. 111–122 (2005)Google Scholar
  9. 9.
    Pitié, F., Kokaram, A.C., Dahyot, R.: Automated colour grading using colour distribution transfer. Computer Vision and Image Understanding 107, 123–137 (2007)CrossRefGoogle Scholar
  10. 10.
    Abadpour, A., Kasaei, S.: An efficient pca-based color transfer method. J. Visual Communication and Image Representation 18, 15–34 (2007)CrossRefGoogle Scholar
  11. 11.
    Adabpour, A., Kasaei, S.: A fast and efficient fuzzy color transfer method. In: Proceedings of the IEEE Symposium on Signal Processing and Information Technology, pp. 491–494 (2004)Google Scholar
  12. 12.
    Nozick, V.: Multiple view image rectification. In: Proc. of IEEE-ISAS 2011, International Symposium on Access Spaces, Yokohama, Japan, pp. 277–282 (2011)Google Scholar
  13. 13.
    Yamamoto, K., Yendo, T., Fujii, T., Tanimoto, M., Suter, D.: Colour correction for multiple-camera system by using correspondences. The Journal of the Institute of Image Information and Television Engineers 61, 213–222 (2007)CrossRefGoogle Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Yamamoto, K., Oi, R.: Color correction for multi-view video using energy minimization of view networks. International Journal of Automation and Computing 5, 234–245 (2008)CrossRefGoogle Scholar
  16. 16.
    Tehrani, M.P., Ishikawa, A., Sakazawa, S., Koike, A.: Iterative colour correction of multicamera systems using corresponding feature points. Journal of Visual Communication and Image Representation 21, 377–391 (2010)CrossRefGoogle Scholar
  17. 17.
    Shao, F., Peng, Z., Yang, Y.: Color correction for multi-view video based on background segmentation and dominant color extraction. WSEAS Transactions on Computers 7, 1838–1847 (2008)Google Scholar
  18. 18.
    Shao, F., Jiang, G.Y., Yu, M., Ho, H.S.: Fast color correction for multi-view video by modeling spatio-temporal variation. Journal of Visual Communication and Image Representation 21, 392–403 (2010)CrossRefGoogle Scholar
  19. 19.
    Shao, F., Jiang, G., Yu, M., Chen, K.: A content-adaptive multi-view video color correction algorithm. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 969–972 (2007)Google Scholar
  20. 20.
    Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions, 1st edn. Society for Industrial and Applied Mathematics, Philadelphia (2007)zbMATHCrossRefGoogle Scholar
  21. 21.
    Evans, C.: Notes on the opensurf library. Technical Report CSTR-09-001, University of Bristol (2009)Google Scholar
  22. 22.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. 2nd edn. Cambridge University Press (2004) ISBN: 0521540518Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clyde Mouffranc
    • 1
  • Vincent Nozick
    • 1
  1. 1.Gaspard Monge InstituteUMR 8049, Paris-Est Marne-la-Vallee UniversityFrance

Personalised recommendations