Advertisement

Improved Spatial Keyword Search Based on IDF Approximation

  • Xiaoling Zhou
  • Yifei Lu
  • Yifang Sun
  • Muhammad Aamir Cheema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7808)

Abstract

Spatial keyword search is a widely investigated topic along with the development of geo-positioning techniques. In this paper, we study the problem of top-k spatial keyword search which retrieves the top k objects that are most relevant to query in terms of joint spatial and textual relevance. Existing state-of-the-art methods index data objects in IR-tree which supports textual and spatial pruning simultaneously, and process query by traversing tree nodes and associated inverted files. However, these search methods suffer from vast number of times of accessing inverted files, which results in slow query time and large IO cost. In this paper, we propose a novel approximate IDF-based search algorithm that performs nearly twice better than existing method, which are shown through an extensive set of experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and robust access method for points and rectangles. In: SIGMOD Conference, pp. 322–331 (1990)Google Scholar
  2. 2.
    Chen, Y.Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: SIGMOD Conference, pp. 277–288 (2006)Google Scholar
  3. 3.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. In: PVLDB, vol. 2(1), pp. 337–348 (2009)Google Scholar
  4. 4.
    Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE, pp. 656–665 (2008)Google Scholar
  5. 5.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Conference, pp. 47–57 (1984)Google Scholar
  6. 6.
    Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In: SSDBM, p. 16 (2007)Google Scholar
  7. 7.
    Hiemstra, D.: A probabilistic justification for using tf x idf term weighting in information retrieval. Int. J. on Digital Libraries 3(2), 131–139 (2000)CrossRefGoogle Scholar
  8. 8.
    Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)CrossRefGoogle Scholar
  9. 9.
    Jones, C.B., Abdelmoty, A.I., Finch, D., Fu, G., Vaid, S.: The SPIRIT spatial search engine: Architecture, ontologies and spatial indexing. In: Egenhofer, M., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 125–139. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Lee, R., Shiina, H., Takakura, H., Kwon, Y.J., Kambayashi, Y.: Optimization of geographic area to a web page for two-dimensional range query processing. In: WISEW 2003, pp. 9–17. IEEE Computer Society, Washington, DC (2003)Google Scholar
  11. 11.
    Li, Z., Lee, K.C.K., Zheng, B., Lee, W.C., Lee, D.L., Wang, X.: IR-Tree: An efficient index for geographic document search. IEEE Trans. Knowl. Data Eng. 23(4), 585–599 (2011)CrossRefGoogle Scholar
  12. 12.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD Conference, pp. 71–79 (1995)Google Scholar
  13. 13.
    Sanderson, M., Kohler, J.: Analyzing geographic queries. In: Workshop on Geographic Information Retrieval SIGIR (2004)Google Scholar
  14. 14.
    Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. IEEE Trans. Knowl. Data Eng. 24(10), 1889–1903 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.Y.: Hybrid index structures for location-based web search. In: CIKM, pp. 155–162 (2005)Google Scholar
  16. 16.
    Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaoling Zhou
    • 1
  • Yifei Lu
    • 1
  • Yifang Sun
    • 1
  • Muhammad Aamir Cheema
    • 1
  1. 1.University of New South WalesAustralia

Personalised recommendations