Finding Diverse Friends in Social Networks

  • Syed Khairuzzaman Tanbeer
  • Carson Kai-Sang Leung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7808)


Social networks are usually made of users linked by friendship, which can be dependent on (or influenced by) user characteristics (e.g., connectivity, centrality, weight, importance, activity in the networks). Among many friends of these social network users, some friends are more diverse (e.g., more influential, prominent, and/or active in a wide range of domains) than other friends in the networks. Recognizing these diverse friends can provide valuable information for various real-life applications when analyzing and mining huge volumes of social network data. In this paper, we propose a tree-based mining algorithm that finds diverse friends, who are highly influential across multiple domains, in social networks.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB 1994, pp. 487–499 (1994)Google Scholar
  2. 2.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: ACM KDD 2008, pp. 7–15 (2008)Google Scholar
  3. 3.
    Cameron, J.J., Leung, C.K.-S., Tanbeer, S.K.: Finding strong groups of friends among friends in social networks. In: IEEE DASC/SCA 2011, pp. 824–831 (2011)Google Scholar
  4. 4.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM SIGMOD 2000, pp. 1–12 (2000)Google Scholar
  5. 5.
    Jiang, F., Leung, C.K.-S., Tanbeer, S.K.: Finding popular friends in social networks. In: CGC/SCA 2012, pp. 501–508. IEEE (2012)Google Scholar
  6. 6.
    Kamath, K.Y., Caverlee, J., Cheng, Z., Sui, D.Z.: Spatial influence vs. community influence: modeling the global spread of social media. In: ACM CIKM 2012, pp. 962–971 (2012)Google Scholar
  7. 7.
    Lee, W., Leung, C.K.-S., Song, J.J., Eom, C.S.-H.: A network-flow based influence propagation model for social networks. In: CGC/SCA 2012, pp. 601–608. IEEE (2012)Google Scholar
  8. 8.
    Lee, W., Song, J.J., Leung, C.K.-S.: Categorical data skyline using classification tree. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.) APWeb 2011. LNCS, vol. 6612, pp. 181–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Leung, C.K.-S., Carmichael, C.L.: Exploring social networks: a frequent pattern visualization approach. In: IEEE SocialCom 2010, pp. 419–424 (2010)Google Scholar
  10. 10.
    Leung, C.K.-S., Tanbeer, S.K.: Mining social networks for significant friend groups. In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA Workshops 2012. LNCS, vol. 7240, pp. 180–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Peng, Z., Wang, C., Han, L., Hao, J., Ou, X.: Discovering the most potential stars in social networks with infra-skyline queries. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012. LNCS, vol. 7235, pp. 134–145. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Sachan, M., Contractor, D., Faruquie, T.A., Subramaniam, L.V.: Using content and interactions for discovering communities in social networks. In: ACM WWW 2012, pp. 331–340 (2012)Google Scholar
  13. 13.
    Schaal, M., O’Donovan, J., Smyth, B.: An analysis of topical proximity in the twitter social graph. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 232–245. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relationship prediction in heterogeneous bibliographic networks. In: ASONAM 2011, pp. 121–128. IEEE (2011)Google Scholar
  15. 15.
    Tanbeer, S.K., Leung, C.K.-S., Cameron, J.J.: DIFSoN: discovering influential friends from social networks. In: CASoN 2012, pp. 120–125. IEEE (2012)Google Scholar
  16. 16.
    Yang, X., Ghoting, A., Ruan, Y., Parthasarathy, S.: A framework for summarizing and analyzing twitter feeds. In: ACM KDD 2012, pp. 370–378 (2012)Google Scholar
  17. 17.
    Zhang, C., Shou, L., Chen, K., Chen, G., Bei, Y.: Evaluating geo-social influence in location-based social networks. In: ACM CIKM 2012, pp. 1442–1451 (2012)Google Scholar
  18. 18.
    Zhang, S., Zhang, C., Yan, X.: Post-mining: maintenance of association rules by weighting. Information Systems 28(7), 691–707 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Syed Khairuzzaman Tanbeer
    • 1
  • Carson Kai-Sang Leung
    • 1
  1. 1.Department of Computer ScienceUniversity of ManitobaCanada

Personalised recommendations