Search on Graphs: Theory Meets Engineering

  • Yuqing Wu
  • George H. L. Fletcher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7808)


The last decade has witnessed an explosion of the availability of and interest in graph structured data. The desire to search and reason over these increasingly massive data collections pushes the boundaries of search languages, from pure keyword search to structure-aware searches in the graph. These phenomena have inspired a rich body of research on query languages, data management and query evaluation techniques for graph data, both from the theoretical and engineering angles. In this tutorial, we present an overview of the progress on graph search queries, focusing specifically on how the theoretical and engineering perspectives meet and together advanced the field.


Query Language Graph Data Conjunctive Query Graph Exploration Graph Structure Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delbru, R., Campinas, S., Tummarello, G.: Searching web data: An entity retrieval and high-performance indexing model. J. Web Sem. 10, 33–58 (2012)CrossRefGoogle Scholar
  2. 2.
    Fazzinga, B., Gianforme, G., Gottlob, G., Lukasiewicz, T.: Semantic web search based on ontological conjunctive queries. J. Web Sem. 9(4), 453–473 (2011)CrossRefGoogle Scholar
  3. 3.
    Fletcher, G.H.L., Van den Bussche, J., Van Gucht, D., Vansummeren, S.: Towards a theory of search queries. ACM Trans. Database Syst. 35(4), 28 (2010)CrossRefGoogle Scholar
  4. 4.
    Fletcher, G.H.L., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D., Vansummeren, S.: Similarity and bisimilarity notions appropriate for characterizing indistinguishability in fragments of the calculus of relations. CoRR, abs/1210.2688 (2012)Google Scholar
  5. 5.
    Fletcher, G.H.L., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D., Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on graphs. In: Proc. ICDT, Uppsala, Sweden, pp. 197–207 (2011)Google Scholar
  6. 6.
    Fletcher, G.H.L., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D., Vansummeren, S., Wu, Y.: The impact of transitive closure on the boolean expressiveness of navigational query languages on graphs. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 124–143. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Fletcher, G.H.L., Hidders, J., Vansummeren, S., Picalausa, F., Luo, Y., De Bra, P.: On guarded simulations and acyclic first-order languages. In: Proc. DBPL, Seattle, WA, USA (2011)Google Scholar
  8. 8.
    Hellings, J., Fletcher, G.H.L., Haverkort, H.: Efficient external-memory bisimulation on DAGs. In: Proc. ACM SIGMOD, Scottsdale, AZ, USA, pp. 553–564 (2012)Google Scholar
  9. 9.
    Liu, Z., Chen, Y.: Processing keyword search on XML: a survey. World Wide Web 14(5-6), 671–707 (2011)CrossRefGoogle Scholar
  10. 10.
    Luo, Y., de Lange, Y., Fletcher, G.H.L., De Bra, P., Hidders, J., Wu, Y.: Bisimulation reduction of big graphs on MapReduce (manuscript in preparation, 2013)Google Scholar
  11. 11.
    Luo, Y., Fletcher, G.H.L., Hidders, J., Wu, Y., De Bra, P.: I/O-efficient algorithms for localized bisimulation partition construction and maintenance on massive graphs. CoRR, abs/1210.0748 (2012)Google Scholar
  12. 12.
    Mass, Y., Sagiv, Y.: Language models for keyword search over data graphs. In: Proc. ACM WSDM, Seattle, Washington, USA (2012)Google Scholar
  13. 13.
    Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF. J. Web Sem. 8(4), 255–270 (2010)CrossRefGoogle Scholar
  14. 14.
    Picalausa, F., Luo, Y., Fletcher, G.H.L., Hidders, J., Vansummeren, S.: A structural approach to indexing triples. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 406–421. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Tran, T., Herzig, D.M., Ladwig, G.: SemSearchPro - using semantics throughout the search process. J. Web Sem. 9(4), 349–364 (2011)CrossRefGoogle Scholar
  16. 16.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: Proc. IEEE ICDE, Shanghai, pp. 405–416 (2009)Google Scholar
  17. 17.
    Wu, Y., Van Gucht, D., Gyssens, M., Paredaens, J.: A study of a positive fragment of path queries: Expressiveness, normal form and minimization. Comput. J. 54(7), 1091–1118 (2011)CrossRefGoogle Scholar
  18. 18.
    Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: A survey. IEEE Data Eng. Bull. 33(1), 67–78 (2010)Google Scholar
  19. 19.
    Zhou, M., Pan, Y., Wu, Y.: Conkar: constraint keyword-based association discovery. In: Proc. ACM CIKM, Glasgow, UK, pp. 2553–2556 (2011)Google Scholar
  20. 20.
    Zhou, M., Pan, Y., Wu, Y.: Efficient association discovery with keyword-based constraints on large graph data. In: Proc. ACM CIKM, Glasgow, UK, pp. 2441–2444 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuqing Wu
    • 1
  • George H. L. Fletcher
    • 2
  1. 1.Indiana UniversityBloomingtonUSA
  2. 2.Eindhoven University of TechnologyThe Netherlands

Personalised recommendations