Location-Based Emerging Event Detection in Social Networks

  • Sayan Unankard
  • Xue Li
  • Mohamed A. Sharaf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7808)


This paper proposes a system for the early detection of emerging events by grouping micro-blog messages into events and using the message-mentioned locations to identify the locations of events. In our research we correlate user locations with event locations in order to identify the strong correlations between locations and events that are emerging. We have evaluated our approach on a real-world Twitter dataset with different granularity of location levels. Our experiments show that the proposed approach can effectively detect the top-k ranked emerging events with respect to the locations of the users in the different granularity of location scales.


Emerging event detection Location-based social networks Micro-blogs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, C., Subbian, K.: Event detection in social streams. In: SDM (2012)Google Scholar
  2. 2.
    Alvanaki, F., Michel, S., Ramamritham, K., Weikum, G.: See what’s enblogue: real-time emergent topic identification in social media. In: EDBT (2012)Google Scholar
  3. 3.
    Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: Real-world event identification on twitter. In: ICWSM (2011)Google Scholar
  4. 4.
    Cataldi, M., Caro, L.D., Schifanella, C.: Emerging topic detection on twitter based on temporal and social terms evaluation. In: MDMKDD (2010)Google Scholar
  5. 5.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, 1st edn. John Wiley & Sons Inc. (February 1973)Google Scholar
  6. 6.
    Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: Annotation, features, and experiments. In: ACL (2011)Google Scholar
  7. 7.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, vol. 163. Prentice Hall (2000)Google Scholar
  8. 8.
    Li, C., Sun, A., Datta, A.: Twevent: segment-based event detection from tweets. In: CIKM (2012)Google Scholar
  9. 9.
    Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: SIGMOD (2010)Google Scholar
  10. 10.
    Ni, X., Quan, X., Lu, Z., Wenyin, L., Hua, B.: Short text clustering by finding core terms. Knowl. Inf. Syst. 27(3), 345–365 (2011)CrossRefGoogle Scholar
  11. 11.
    Ozdikis, O., Senkul, P., Oguztuzun, H.: Semantic expansion of hashtags for enhanced event detection in twitter. In: VLDB-WOSS (2012)Google Scholar
  12. 12.
    Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)CrossRefGoogle Scholar
  13. 13.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)CrossRefGoogle Scholar
  14. 14.
    Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.: Twitterstand: news in tweets. In: GIS (2009)Google Scholar
  15. 15.
    Sayyadi, H., Hurst, M., Maykov, A.: Event detection and tracking in social streams. In: ICWSM (2009)Google Scholar
  16. 16.
    Watanabe, K., Ochi, M., Okabe, M., Onai, R.: Jasmine: a real-time local-event detection system based on geolocation information propagated to microblogs. In: CIKM (2011)Google Scholar
  17. 17.
    Weng, J., Lee, B.-S.: Event detection in twitter. In: ICWSM (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sayan Unankard
    • 1
  • Xue Li
    • 1
  • Mohamed A. Sharaf
    • 1
  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandAustralia

Personalised recommendations