A Recommender System Model Combining Trust with Topic Maps

  • Zukun Yu
  • William Wei Song
  • Xiaolin Zheng
  • Deren Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7808)


Recommender Systems (RS) aim to suggest users with items that they might like based on users’ opinion on items. In practice, information about the users’ opinion on items is usually sparse compared to the vast information about users and items. Therefore it is hard to analyze and justify users’ favorites, particularly those of cold start users. In this paper, we propose a trust model based on the user trust network, which is composed of the trust relationships among users. We also introduce the widely used conceptual model Topic Map, with which we try to classify items into topics for Recommender analysis. We novelly combine trust relations among users with Topic Maps to resolve the sparsity problem and cold start problem. The evaluation shows our model and method can achieve a good recommendation effect.


Recommender Systems Trust Model Reputation Trust Propagation Topic Maps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, B.T., Alfaro, L.D.: A Content-Driven Reputation System for the Wikipedia. Technical Report ucsc-crl-06-18. School of Engineering, University of California, Santa Cruz (2006)Google Scholar
  2. 2.
    Basu, C., Hirsh, H., Cohen, W.: Recommendation as Classification: Using Social and Content-Based Information in Recommendation, pp. 714–720. AAAI Press (1998)Google Scholar
  3. 3.
    Blanco-Fernández, Y., Pazos-Arias, J.J., Gil-Solla, A., Ramos-Cabrer, M., López-Nores, M., García-Duque, J., Fernández-Vilas, A., Díaz-Redondo, R.P., Bermejo-Muñoz, J.: A flexible semantic inference methodology to reason about user preferences in knowledge-based recommender systems. Knowl-Based Syst. 21, 305–320 (2008)CrossRefGoogle Scholar
  4. 4.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann Publishers Inc., Madison (1998)Google Scholar
  5. 5.
    Christo, D., Darina, D., Lora, A.: Using topic maps for e-learning. In: Proceedings of International Conference on Computers and Advanced Technology in Education including the IASTED International Symposium on Web-Based Education, Rhodes, Greece, pp. 26–31 (2003)Google Scholar
  6. 6.
    Dong, Y., Li, M.: HyO-XTM: a set of hyper-graph operations on XML Topic Map toward knowledge management. Future Gener. Comp. Sy. 20, 81–100 (2004)CrossRefGoogle Scholar
  7. 7.
    Golbeck, J., Rothstein, M.: Linking social networks on the web with FOAF: a semantic web case study. In: AAAI 2008, pp. 1138–1143. AAAI Press (2008)Google Scholar
  8. 8.
    Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of the 13th International Conference on World Wide Web, pp. 403–412. ACM, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst. 22, 116–142 (2004)CrossRefGoogle Scholar
  10. 10.
    Jamali, M., Ester, M.: TrustWalker: a random walk model for combining trust-based and item-based recommendation. In: KDD 2009, pp. 397–406. ACM, New York (2009)Google Scholar
  11. 11.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in P2P networks. In: Proceedings of the 12th International Conference on World Wide Web, pp. 640–651. ACM, Budapest (2003)Google Scholar
  12. 12.
    Kini, A., Choobineh, J.: Trust in electronic commerce: definition and theoretical considerations. In: Proceedings of the Thirty-First Hawaii International Conference on System Sciences, vol. 4, pp. 51–61 (1998)Google Scholar
  13. 13.
    Knud, S.: Topic Maps-An Enabling Technology for Knowledge Management. In: International Workshop on Database and Expert Systems Applications, p. 472 (2001)Google Scholar
  14. 14.
    Massa, P., Bhattacharjee, B.: Using Trust in Recommender Systems: An Experimental Analysis, pp. 221–235 (2004)Google Scholar
  15. 15.
    Massa, P., Avesani, P.: Trust-aware recommender systems. In: RecSys 2007, pp. 17–24. ACM, New York (2007)Google Scholar
  16. 16.
  17. 17.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: Eighteenth National Conference on Artificial Intelligence (AAAI 2002)/Fourteenth Innovative Applications of Artificial Intelligence Conference, pp. 187–192 (2002)Google Scholar
  18. 18.
    Miranda, T., Claypool, M., Gokhale, A., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper (1999)Google Scholar
  19. 19.
    Papagelis, M., Rousidis, I., Plexousakis, D., Theoharopoulos, E.: Incremental Collaborative Filtering for Highly-Scalable Recommendation Algorithms. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 553–561. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)Google Scholar
  21. 21.
    Schein, A.I., Popescul, A., Popescul, R., Ungar, L.H., Pennock, D.M.: Methods and Metrics for Cold-Start Recommendations, pp. 253–260. ACM Press (2002)Google Scholar
  22. 22.
    G. M. O. The Topic Maps: XML Topic Maps (XTM) 1.0. (2001) Google Scholar
  23. 23.
    Tso, K., Schmidt-Thieme, L.: Empirical Analysis of Attribute-Aware Recommendation Algorithms with Variable Synthetic Data. Data Science and Classification, 271–278 (2006)Google Scholar
  24. 24.
    Vercellis, C.: Business Intelligence: Data Mining and Optimization for Decision Making, p. 277. John Wiley & Sons, Ltd., Chichester (2009)zbMATHGoogle Scholar
  25. 25.
    Vydiswaran, V.G.V., Zhai, C., Roth, D.: Content-driven trust propagation framework. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 974–982. ACM, San Diego (2011)Google Scholar
  26. 26.
    Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs. Physica A 389, 179–186 (2010)CrossRefGoogle Scholar
  27. 27.
    Ziegler, C., Lausen, G.: Spreading activation models for trust propagation. In: Proceedings of 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, pp. 83–97 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zukun Yu
    • 1
  • William Wei Song
    • 2
  • Xiaolin Zheng
    • 1
  • Deren Chen
    • 1
  1. 1.Computer Science CollegeZhejiang UniversityHangzhouChina
  2. 2.School of Technology and Business StudiesDalarna UniversityBorlängeSweden

Personalised recommendations