Skip to main content

Neural Network Control of Buoyancy-Driven Autonomous Underwater Glider

  • Chapter
  • First Online:
Recent Advances in Robotics and Automation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 480))

Abstract

This chapter presents a mathematical model and motion control analysis of a buoyancy-driven underwater glider. The glider mathematical model, which includes the presence of disturbance from the water currents, has been designed by using the Newton-Euler method. In order to predict and control the glider motion, a neural network control has been used as a model predictive control (MPC) as well as a gain tuning algorithm. The motion has been controlled by six control inputs: two forces of a sliding mass, a ballast pumping rate, and three velocities of water currents. The simulation results show the analysis of the motion control system for both neural network control approaches, and a comparison with the Linear Quadratic Regulator (LQR) controller is also included. The results show that the model is stable, and the neural network controller of MPC produced better control performance than the neural network gain tuner and the LQR, where the accuracy value of the MPC is 94.5 %.

“Based on Vertical motion simulation and analysis of USM underwater glider, Khalid Isa and Mohd Rizal Arshad which appeared in the Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA 2011). © 2011 IEEE.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Stommel, The Slocum mission. Oceanography 2, 22–25 (1989).

    Article  Google Scholar 

  2. D.C. Webb, P.J. Simonetti, C.P. Jones, SLOCUM: An underwater glider propelled by environment energy. IEEE J. Oceanic Eng. 26(4), 447–452 (2001).

    Article  Google Scholar 

  3. J. Sherman, R.E. Davis, W.B. Owens, J. Valdes, The autonomous underwater glider “spray”. IEEE J. Oceanic Eng. 26(4), 437–446 (2001).

    Article  Google Scholar 

  4. C.C. Eriksen, T.J. Osse, R.D. Light, T.Wen, T.W. Lehman, P.L. Sabin, J.W. Ballard, A.M. Chiodi, Seaglider: A long range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng. 26(4), 424–436 (2001).

    Article  Google Scholar 

  5. T.J. Osse, C.C. Eriksen, in The Deepglider: A full Ocean Depth Glider for Oceanographic Research. Proceedings of IEEE Oceans 2007 (IEEE Press, New York, 2007), pp. 1–12

    Google Scholar 

  6. D.L. Rudnick, R.E. Davis, C.C. Eriksen, D.M. Fratantoni, M.J. Perry, Underwater gliders for ocean research. Mar. Tech Soc. J. 38(1), 48–59 (2004).

    Google Scholar 

  7. S.A. Jenkins, D.E. Humphreys, J. Sherman, J. Osse, C. Jones, N. Leonard, J.G. Graver, R. Bachmayer, T. Clem, P. Caroll, P. Davis, J. Berry, P. Wosley, J. Wasyl, Under water glider system study. Tech. report 53, Scripps Institute of Oceanography, University of California, (San Diego, 2003).

    Google Scholar 

  8. R. Bachmayer, J.G. Graver, N.E. Leonard, in Glider control: A Close Look into the Current Glider Controller Structure and Future Developments, Proceedings of OCEANS 2003 (IEEE Press, New York, 2003), pp. 951–954

    Google Scholar 

  9. D. C. Seo, G. Jo, H. S. Choi, in Pitching Control Simulations of an Underwater Glider Using CFD Analysis. Proceedings of OCEANS 2008 (IEEE Press, New York, 2008), pp. 1–5

    Google Scholar 

  10. N. Mahmoudian, C. Woolsey, in Underwater Glider Motion Control, Proceedings of the 47th IEEE Conference on Decision and Control, pp. 552–557

    Google Scholar 

  11. N.E. Leonard, J.G. Graver, Model-based feedback control of autonomous underwater gliders. IEEE J. Oceanic Eng. 26(4), 633–645 (2001)

    Article  Google Scholar 

  12. K. Lei, Z. Yuwen, Y. Hui, C. Zhikun, MATLAB-based simulation of buoyancy-driven underwater glider motion. J. Ocean Univ. China 7(1), 133–188 (2008)

    Google Scholar 

  13. Y. Wang, H. Zhang, S. Wang, in Trajectory Control Strategies for the Underwater Glider, Proceedings of International Conference on Measuring Technology and Mechatronics Automation (IEEE Press, New York, 2009), pp. 918–921

    Google Scholar 

  14. B.-H. Jun, J.-Y. Park, F.-Y. Lee, P.-M. Lee, C.-M. Lee, K. Kim, Y.-K. Lim, J.-H. Oh, Development of the AUV ‘ISiMI’ and free running test in an ocean engineering basin. J. Ocean Eng. 36(1), 2–14 (2009)

    Article  MATH  Google Scholar 

  15. H. Yang, J. Ma, in Sliding Mode Tracking Control of an Autonomous Underwater Glider. Proceedings of International Conference on Computer Application and System Modeling (ICCASM 2010) (2010), pp. 555–558

    Google Scholar 

  16. A. Budiyono, Advances in unmanned underwater vehicles technologies: Modeling, control and guidance perspectives. Indian J. Geo-Mar. Sci. 38(3), 282–295 (2009)

    Google Scholar 

  17. A. Reza, A. A. Khayyat, K. G. Osgouie, in Neural Networks Control of Autonomous Underwater Vehicle, Proceedings of International Conference on Mechanical and Electronics Engineering (ICMEE 2010) (2010), vol. 2, pp. 117–121

    Google Scholar 

  18. K. Isa, M. R. Arshad, in Vertical Motion Simulation and Analysis of USM Underwater Glider, Proceedings of the 5th International Conference on Automation, Robotics and Applications, 2011, pp. 139–144

    Google Scholar 

  19. K. Isa, M. R. Arshad, inDynamic Modeling and Characteristics Estimation for USM Underwater Glider, Proceedings of IEEE Control and System Graduate Research Colloquium (ICSGRC) Incorporating the International Conference on System Engineering and Technology (ICSET, 2011) (2011), pp. 12–17

    Google Scholar 

  20. W. Wei, C. M. Clark, in Modeling and Simulation of the VideoRay Pro III Underwater Vehicle, Proceedings of OCEANS 2006 (IEEE Press, New York, 2006), pp. 283–287

    Google Scholar 

  21. Y. Li, L. Jian-Cheng, S. Ming-Xue, Dynamics model of underwater robot motion control in 6 degrees of freedom. J. Harbin Inst. Technol. 12(4), 456–459 (2005)

    Google Scholar 

  22. F. Song, P. Edgar An, A. Folleco, Modeling and simulation of autonomous underwater vehicles: Design and implementation. IEEE J. Oceanic Eng. 28(2), 283–296 (2003)

    Article  Google Scholar 

  23. J.G. Graver, Underwater Gliders: Dynamics, Control and Design, Dissertation, Princeton University, 2005

    Google Scholar 

  24. N. Mahmoudian, Efficient Motion Planning and Control for Underwater Gliders, Dissertation, Virginia Polytechnic Institute and State University, 2009

    Google Scholar 

  25. T.I. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernatics, Trondheim, 2002)

    Google Scholar 

  26. W.J. Pepijn, T.A. Johansen, A.J. Sorensen, C. Flanagan, D. Toal, Neural networks augmented identification of underwater vehicle models. J. Control Eng. Pract. 15, 715–725 (2007). ELSEVIER

    Article  Google Scholar 

  27. W.J. Pepijn, C. Flanagan, D. Toal, Neural network control of underwater vehicles. J. Eng. Appl. Artif. Intell. 18, 533–547 (2005). ELSEVIER

    Article  Google Scholar 

  28. J.H. Li, P.M. Lee, A neural network adaptive controller design for free-pitch- angle diving behavior of an autonomous underwater vehicle. J. Robot. Auton. Syst. 52, 132–147 (2005). ELSEVIER

    Article  Google Scholar 

  29. K. Ishii, T. Ura, An adaptive neural-net controller system for an underwater vehicle. J. Control Eng. Pract. 8, I77–I184 (2000). ELSEVIER

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the Malaysia Ministry of Higher Education (MOHE), ERGS-203/PELECT/6730045, Universiti Sains Malaysia (USM) and Universiti Tun Hussein Onn Malaysia (UTHM) for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Isa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isa, K., Arshad, M.R. (2013). Neural Network Control of Buoyancy-Driven Autonomous Underwater Glider. In: Sen Gupta, G., Bailey, D., Demidenko, S., Carnegie, D. (eds) Recent Advances in Robotics and Automation. Studies in Computational Intelligence, vol 480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37387-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37387-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37386-2

  • Online ISBN: 978-3-642-37387-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics