Advertisement

Vision Based Control for Micro Aerial Vehicles: Application to Sense and Avoid

  • Luis Mejias
  • Iván F. Mondragón Bernal
  • Pascual Campoy
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 480)

Abstract

This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our approach achieves minimum separation between the two vehicles by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing-only visual servoing approach. We provide theoretical problem formulation, as well as results from real flight using small quadrotors.

Keywords

Collision Avoidance Minimum Separation Unman Aerial System Omnidirectional Camera Real Flight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work presented in this chapter is the result of an ongoing collaboration between the Computer Vision Group - Universidad Politécnica de Madrid and the Australian Research Centre for Aerospace Automation (ARCAA). This work has been supported by the European Commission and the Australian Academy of Science through a FP7-PEOPLE-IRSES-2008 grant (PIRSES-GA-2009-230797 - ICPUAS). The authors also would like to thank Universidad Politécnica de Madrid, Consejería de Educación de la Comunidad de Madrid and Fondo Social Europeo (FSE). The authors acknowledge the contribution and support from Troy Bruggemann, Miguel Olivares Mendez and Carol Martinez.

References

  1. 1.
    I. Dryanovski, W. Morris, J. Xiao, in Multi-volume Occupancy Grids: An Efficient Probabilistic 3d Mapping Model for Micro Aerial Vehicles. Intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, pp. 1553–1559 (2010). http://dx.doi.org/10.1109/IROS.2010.5652494
  2. 2.
    S. Lupashin, A. Schö andllig, M. Sherback, R. D’Andrea, in A Simple Learning Strategy for High-speed Quadrocopter Multi-flips. Robotics and automation (ICRA), 2010 IEEE international conference on, pp. 1642–1648 (2010). http://dx.doi.org/10.1109/ROBOT.2010.5509452
  3. 3.
    N. Michael, D. Mellinger, Q. Lindsey, V. Kumar, The grasp multiple micro-uav testbed. Robot. Autom. Mag., IEEE 17(3), 56–65 (2010). http://dx.doi.org/10.1109/MRA.2010.937855 Google Scholar
  4. 4.
    B. Gielow, Congress sets 2015 deadline for unmanned aircraft systems to fly in the national airspace the u.s. house of representatives passed a compromise faa bill including uas provisions. AUVSI. Feb 2012. http://www.auvsi.org/news/#HouseFAAPass (2012)
  5. 5.
    ASTM, F2411–07 - standard specification for design and performance of an airborne sense-and-avoid system (2007)Google Scholar
  6. 6.
    US-OSoD, Unmanned systems roadmap 2009–2034, 4th edn. Office of the Secretary of Defense, Washington, District of Columbia (2009)Google Scholar
  7. 7.
    B. Karhoff, J. Limb, S. Oravsky, A. Shephard, in Eyes in the Domestic Sky: An Assessment of Sense and Avoid Technology for the Army’s Warrior Unmanned Aerial Vehicle. IEEE systems and information engineering design symposium, pp. 36–42 (2006). http://dx.doi.org/10.1109/SIEDS.2006.278710
  8. 8.
    O. Shakernia, W.Z. Chen, V.M. Raska, in Passive Ranging for uav Sense and Avoid Applications. Proceedings of the AIAA infotech@aerospace conference, Arlington, Virginia, pp. 1–10 (2005)Google Scholar
  9. 9.
    J. Driessen, Object tracking in a computer vision based autonomous see-and-avoid system for unmanned aerial vehicles. Master’s thesis, Department of Numerical Analysis and Computer Science. Royal Institute of Technology, Stockholm, Sweden (2004)Google Scholar
  10. 10.
    G. Fasano, Multisensor based fully autonomous non-cooperative collision avoidance system for uavs. Phd thesis, University of Naples (2008)Google Scholar
  11. 11.
    J. Saunders, R. Beard, in Vision-based Reactive Multiple Obstacle Avoidance for Micro Air Vehicles. 2009 American control conference, pp. 5253–5258 (2009)Google Scholar
  12. 12.
    Y. Watanabe, A.J. Calise, E.N. Johnson, in Vision-based Obstacle Avoidance for uavs. Proceedings of the AIAA guidance, navigation and control conference, Hilton Head, South Carolina, pp. 20–23 (2007)Google Scholar
  13. 13.
    P. Angelov, C.D. Bocaniala, C. Xideas, C. Patchett, D. Ansell, M. Everett, G. Leng, in A Passive Approach to Autonomous Collision Detection and Avoidance. Proceedings of the 10th international conference on computer modeling and simulation, Cambridge, UK, pp. 64–69 (2008)Google Scholar
  14. 14.
    L. Mejias, S. Mcnamara, J. Lai, J.J. Ford, in Vision-based Detection and Tracking of Aerial Targets for uav Collision Avoidance. Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 87–92 (2010)Google Scholar
  15. 15.
    J. Lai, L. Mejias, J.J. Ford, Airborne vision-based collision-detection system. J. Field Robot. 28(2), 137–157 (2011)zbMATHCrossRefGoogle Scholar
  16. 16.
    P. Corke, in Spherical Image-based Visual Servo and Structure Estimation. Robotics and automation (ICRA), 2010 IEEE international conference on, pp. 5550–5555 (2010)Google Scholar
  17. 17.
    P. Corke, S. Hutchinson, A new partitioned approach to image-based visual servo control. Robot. Autom., IEEE Trans. 17(4), 507–515 (2001). http://dx.doi.org/10.1109/70.954764
  18. 18.
    F. Chaumette, S. Hutchinson, Visual servo control. i. basic approaches. Robot. Autom. Mag., IEEE 13(4), 82–90 (2006). http://dx.doi.org/10.1109/MRA.2006.250573
  19. 19.
    F. Chaumette, S. Hutchinson, Visual servo control. ii. advanced approaches [tutorial]. Robot. Autom. Mag., IEEE 14(1), 109–118 (2007). http://dx.doi.org/10.1109/MRA.2007.339609
  20. 20.
    C. Baumgarten, G. Farin, Approximation of logarithmic spirals. Comput. Aided Geom. Des. 14(6), 515–532 (1997). http://www.sciencedirect.com/science/article/pii/S01678396960%0043X
  21. 21.
    A. Tews, J. Roberts, K. Usher, in Is the sun too Bright in Queensland? An Approach to Robust Outdoor Colour Beacon Detection. Australasian conference on robotics and automation (ACRA) (2005)Google Scholar
  22. 22.
    G.R. Bradski, Computer vision face tracking for use in a perceptual user interface. Intel. Technol. J. (No. Q2) (1998)Google Scholar
  23. 23.
    S. Baker, S.K. Nayar, A theory of single-viewpoint catadioptric image formation. Int. J. Comput. Vis. 35(2), 1–22 (1999)CrossRefGoogle Scholar
  24. 24.
    J.A. Barreto, H. Araujo, in Issues on the Geometry of Central Catadioptric Image Formation. Computer vision and pattern recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE computer society conference on 2, II-422-II-427 vol. 2 (2001). http://dx.doi.org/10.1109/CVPR.2001.990992
  25. 25.
    C. Geyer, K. Daniilidis, A unifying theory for central panoramic systems and practical applications. ECCV (2), 445–461 (2000)Google Scholar
  26. 26.
    X. Ying, Z. Hu, in Can We Consider Central Catadioptric Cameras and Fisheye Cameras within a Unified Imaging Model. Computer vision - ECCV 2004, Lecture notes in computer science, vol. 3021, pp. 442–455. (Springer, Berlin, Heidelberg, 2004)Google Scholar
  27. 27.
    D. Scaramuzza, Omnidirectional vision: from calibration to robot motion estimation. Ph.D. thesis, ETH Zurich (2008)Google Scholar
  28. 28.
    C. Mei, P. Rives, in Single View Point Omnidirectional Camera Calibration from Planar Grids. IEEE international conference on robotics and automation (2007)Google Scholar
  29. 29.
    D. Austin, N. Banes, in Red is the New Black—Or Is It?. Australasian conference on robotics and automation (ACRA) (2003)Google Scholar
  30. 30.
    K. Fukunaga, L. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition. Inf. Theory, IEEE Trans. 21(1), 32–40 (1975). http://dx.doi.org/10.1109/TIT.1975.1055330
  31. 31.
    L. Mejias, J. Ford, J. Lai, in Towards the Implementation of Vision-based uas Sense-and-avoid. Proceedings of the 27th international congress of the aeronautical sciences (ICAS 2010 CD-Rom ) (2010)Google Scholar
  32. 32.
    S. Benhimane, E. Malis, in A New Approach to Vision-based Robot Control with Omni-directional Cameras. Robotics and automation, 2006. ICRA 2006. Proceedings 2006 IEEE international conference on, pp. 526–531 (2006). http://dx.doi.org/10.1109/ROBOT.2006.1641764
  33. 33.
    S. Hutchinson, G. Hager, P. Corke, A tutorial on visual servo control. Robot. Autom., IEEE Trans. on 12(5), 651–670 (1996). http://dx.doi.org/10.1109/70.538972
  34. 34.
    AscendingTechnologies: Ascending technologies. http://www.asctec.de (2010)
  35. 35.
    CVG-UPM: Universidad Politécnica de Madrid. Computer Vision Group. Vision for UAV Project. http://www.vision4uav.com (2010)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis Mejias
    • 1
  • Iván F. Mondragón Bernal
    • 2
  • Pascual Campoy
    • 3
  1. 1.Australian Research Centre for Aerospace Automation (ARCAA), Science and Engineering Faculty, EECSQueensland University of TechnologyBrisbaneAustralia
  2. 2.Centro Tecnológico de Automatización Industrial CTAIPontificia Universidad JaverianaBogotáColombia
  3. 3.Computer Vision Group U.P.M.Centro de Automática y Robótica -CSIC-UPMMadridSpain

Personalised recommendations