Skip to main content

Context-Aware Predictions on Business Processes: An Ensemble-Based Solution

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7765))

Abstract

The discovery of predictive models for process performances is an emerging topic, which poses a series of difficulties when considering complex and flexible processes, whose behaviour tend to change over time depending on context factors. We try to face such a situation by proposing a predictive-clustering approach, where different context-related execution scenarios are equipped with separate prediction models. Recent methods for the discovery of both Predictive Clustering Trees and state-aware process performance predictors can be reused in the approach, provided that the input log is preliminary converted into a suitable propositional form, based on the identification of an optimal subset of features for log traces. In order to make the approach more robust and parameter free, we also introduce an ensemble-based clustering method, where multiple PCTs are learnt (using different, randomly selected, subsets of features), and integrated into an overall model. Several tests on real-life logs confirmed the validity of the approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CLUS: A predictive clustering system, http://dtai.cs.kuleuven.be/clus/

  2. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data & Knowledge Engineering 47(2), 237–267 (2003)

    Article  Google Scholar 

  3. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Information Systems 36(2), 450–475 (2011)

    Article  Google Scholar 

  4. Aho, T., Zenko, B., Dzeroski, S.: Rule ensembles for multi-target regression. In: Proc. of 9th Int. Conf. on Data Mining, ICDM 2009, pp. 21–30 (2009)

    Google Scholar 

  5. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proc. of 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2001, pp. 245–250 (2001)

    Google Scholar 

  6. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101(1-2), 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boulis, C., Ostendorf, M.: Combining multiple clustering systems. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 63–74. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  10. Casillas, A., de Lena, M.T.G.d., Martínez, R.: Document clustering into an unknown number of clusters using a genetic algorithm. In: Matoušek, V., Mautner, P. (eds.) TSD 2003. LNCS (LNAI), vol. 2807, pp. 43–49. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: When will this case finally be finished? In: Proc. of 16th Int. Conf. on Cooperative Information Systems, CoopIS 2008, pp. 319–336 (2008)

    Google Scholar 

  12. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: A cluster ensemble approach. In: Proc. of 20th Int. Conf. on Machine Learning, ICML 2003, pp. 186–193 (2003)

    Google Scholar 

  13. Filkov, V., Skiena, S.S.: Heterogeneous data integration with the consensus clustering formalism. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp. 110–123. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Proc. of 20th Int. Conf. on Cooperative Information Systems, CoopIS 2012, pp. 287–304 (2012)

    Google Scholar 

  15. Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refinement. In: Proc. of Workshop on Algorithm Engineering and Experiments, ALENEX 2008, pp. 109–117 (2008)

    Google Scholar 

  16. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Transaction on Knowledge and Data Engineering 18(8), 1010–1027 (2006)

    Article  Google Scholar 

  17. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Ensembles of multi-objective decision trees. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 624–631. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Mufti, G.B., Bertrand, P., El Moubarki, L.: Determining the number of groups from measures of cluster stability. In: Proc. of Int. Symp. on Applied Stochastic Models and Data Analysis, ASMDA 2005, pp. 404–412 (2005)

    Google Scholar 

  19. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural-network ensemble. In: Proc. of Advances in Neural Information Processing Systems 8, NIPS 1995, pp. 535–541 (1995)

    Google Scholar 

  20. Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of the number of clusters. In: Proc. of 17th Int. Conf. on Machine Learning, ICML 2000, pp. 727–734 (2000)

    Google Scholar 

  21. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

    MathSciNet  Google Scholar 

  22. Topchy, A.P., Jain, A.K., Punch, W.F.: A mixture model for clustering ensembles. In: Proc. of 4th SIAM Int. Conf. on Data Mining, SDM 2004 (2004)

    Google Scholar 

  23. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Folino, F., Guarascio, M., Pontieri, L. (2013). Context-Aware Predictions on Business Processes: An Ensemble-Based Solution. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2012. Lecture Notes in Computer Science(), vol 7765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37382-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37382-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37381-7

  • Online ISBN: 978-3-642-37382-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics