Skip to main content

Collapse and Post-Collapse Behavior of Steel Pipes. Finite Element Models

  • Chapter
  • First Online:
  • 1272 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

Abstract

The main objective of this chapter is to discuss some basic ideas regarding the behavior of steel pipes under external pressure and bending.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bathe K-J (1996) Finite element procedures. Prentice Hall, Saddle River

    Google Scholar 

  2. Hill R (1971) The mathematical theory of plasticity. Oxford University Press, New York

    Google Scholar 

  3. ADINA R&D. The ADINA System. Watertown

    Google Scholar 

  4. Dvorkin EN, Vassolo SI (1989) A quadrilateral 2-D finite element based on mixed interpolation of tensorial components. Eng Comput 6:217–224

    Article  Google Scholar 

  5. Dvorkin EN, Assanelli AP (1989) Elasto-plastic analysis using a quadrilateral 2-D element based on mixed interpolation of tensorial components. In: Owen et al. DRJ (ed) Proceeding of second international conference on computational plasticity

    Google Scholar 

  6. Dvorkin EN, Assanelli AP, Toscano RG (1996) Performance of the QMITC element in two-dimensional elasto-plastic analyses. Comput Struct 58:1099–1129

    Article  MATH  Google Scholar 

  7. Brush DO, Almroth BO (1975) Buckling of bars, plates and shells. Mc Graw Hill, New York

    MATH  Google Scholar 

  8. Timoshenko SP, Gere JM (1961) Theory of elastic stability. Mc Graw Hill, New York

    Google Scholar 

  9. Corona E, Kyriakides S (2000) An unusual mode of collapse of tubes under combined bending and pressure. ASME J Press Vesse Technol 109:302–304

    Article  Google Scholar 

  10. Fowler JR, Hormberg B, Katsounas A (1990) Large scale collapse testing. SES Report, Prepared for the Offshore Supervisor Committee, American Gas Association

    Google Scholar 

  11. Tokimasa K, Tanaka K (1986) FEM analysis of the collapse strength of a tube. J Press Vessel Technol 108:158–164

    Article  Google Scholar 

  12. Kanda M, Yazaki Y, Yamamoto K, Higashiyama H, Sato T, Inoue T et al (1983) Development of NT-series oil-country tubular good. Nippon Steel Techn Rep 21:247–262

    Google Scholar 

  13. Krug G (1983) Testing of casing under extreme loads. Institute of Petroleum Engineering, Technische Univesitat, Clausthal

    Google Scholar 

  14. Mimura H, Tamano T, Mimaki T (1987) Finite element analysis of collapse strength of casing. Nippon Steel Techn Rep 34:62–69

    Google Scholar 

  15. Toscano RG, Amenta PM, Dvorkin EN (2002) Enhancement of the collapse resistance of tubular products for deepwater pipeline applications. In: IBC’S Offshore Pipeline Technology, conference documentation

    Google Scholar 

  16. Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  17. Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383

    Article  MATH  Google Scholar 

  18. Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722

    Article  MATH  Google Scholar 

  19. Bathe K-J, Dvorkin EN (1983) On the automatic solution of nonlinear finite element equations. Comput Struct 17:871–879

    Article  Google Scholar 

  20. Fowler JR, Klementich EF, Chappell JF (1983) Analysis and testing of factors affecting collapse performance of casing. ASME J Energy Resour Technol 105:574–579

    Article  Google Scholar 

  21. Kyriakides S (1994) Propagating instabilities in structures. Adv Appl Mech 30:67–189

    Article  Google Scholar 

  22. Palmer AC, Martin JH (1975) Buckle propagation in submarine pipelines. Nature 254:46–48

    Article  Google Scholar 

  23. Brazier LG (1927) On the flexure of thin cylindrical shells and other thin sections. Proc Roy Soc Lond, Math Phys A 116:104–114

    Google Scholar 

  24. Marlow RS (1982) Collapse performance of HC-95 casing. Report for the API PRAC Project Nº 80–30

    Google Scholar 

  25. Tamano T, Mimaki T, Yaganimoto S (1983) A new empirical formula for collapse resistance of commercial casing. In: ASME, proceeding 2nd international offshore mechanics and Arctic engineering symposium, Houston, pp 489–495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo N. Dvorkin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Dvorkin, E.N., Toscano, R.G. (2013). Collapse and Post-Collapse Behavior of Steel Pipes. Finite Element Models. In: Finite Element Analysis of the Collapse and Post-Collapse Behavior of Steel Pipes: Applications to the Oil Industry. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37361-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37361-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37360-2

  • Online ISBN: 978-3-642-37361-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics