Advertisement

Shell Element Formulations for General Nonlinear Analysis. Modeling Techniques

  • Eduardo N. DvorkinEmail author
  • Rita G. Toscano
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In 1970, Ahmad et al. [1] presented a shell element formulation that after many years still constitutes the basis for modern finite element analysis of shell structures. The original formulation was afterwards extended to material and geometric nonlinear analysis under the constraint of the infinitesimal strains assumption [2–4].

Keywords

Shell Element Finite Strain Director Vector Infinitesimal Strain Hyperelastic Material Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2:419–451CrossRefGoogle Scholar
  2. 2.
    Ramm E (1977) A plate/shell element for large deflections and rotations. In: Bathe et al (ed) Formulations and computational algorithms in finite element analysis. MIT Press, CambridgeGoogle Scholar
  3. 3.
    Kråkeland B (1978) Nonlinear analysis of shells using degenerate isoparametric elements. In: Bergan et al (ed), Finite elements in nonlinear mechanics. Tapir Publishers, Norwegian Institute of Technology, TrondheimGoogle Scholar
  4. 4.
    Bathe K-J, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11:23–48zbMATHCrossRefGoogle Scholar
  5. 5.
    Bathe K-J (1996) Finite element procedures. Prentice Hall, Saddle RiverGoogle Scholar
  6. 6.
    Zienkiewicz O, Taylor R (2000) The finite element method. Butterworth-Heinemann, OxfordzbMATHGoogle Scholar
  7. 7.
    Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRefGoogle Scholar
  8. 8.
    Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383zbMATHCrossRefGoogle Scholar
  9. 9.
    Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722zbMATHCrossRefGoogle Scholar
  10. 10.
    Rodal J, Witmer E (1979) Finite-strain large-deflection elastic-viscoplastic finite-element transient analysis of structure. NASA CR 159874Google Scholar
  11. 11.
    Hughes T, Carnoy E (1983) Nonlinear finite element shell formulation accounting for large membrane strains. Comput Methods Appl Mech Eng 39:69–82zbMATHCrossRefGoogle Scholar
  12. 12.
    Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Simo J, Fox D, Rifai M (1989) On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Comput Methods Appl Mech Eng 72:53–92MathSciNetCrossRefGoogle Scholar
  14. 14.
    Simo J, Fox D, Rifai M (1990) On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput Methods Appl Mechs Eng 79:21–70MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Simo J, Fox D, Rifai M (1992) On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81:91–126MathSciNetCrossRefGoogle Scholar
  16. 16.
    Simo J, Kennedy J (1992) On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity formulation and integration algorithms. Comput Methods Appl Mech Eng 96:133–171MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Büchter M, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37:2551–2568zbMATHCrossRefGoogle Scholar
  18. 18.
    Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449zbMATHCrossRefGoogle Scholar
  19. 19.
    Dvorkin EN, Pantuso D, Repetto E (1995) A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput Methods Appl Mech Eng 125:17–40CrossRefGoogle Scholar
  20. 20.
    Dvorkin EN (1995) Nonlinear analysis of shells using the MITC formulation. Arch Comput Methods En 2:1–50MathSciNetCrossRefGoogle Scholar
  21. 21.
    Toscano RG, Dvorkin EN (2007) A shell element for finite strain analyses. Hyperelastic material models. Eng Comput 24:514–535zbMATHCrossRefGoogle Scholar
  22. 22.
    Toscano RG, Dvorkin EN (2008) A new shell element for elasto-plastic finite strain analyzes. Application to the collapse and post-collapse analysis of marine pipelines. In: Abel J, Cooke J (eds), Proceedings 6th international conference on computation of shell & spatial structures, Spanning Nano to Mega. IthacaGoogle Scholar
  23. 23.
    Dvorkin EN, Oñate E, Oliver X (1988) On a nonlinear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Methods Eng 26:1597–1613zbMATHCrossRefGoogle Scholar
  24. 24.
    Dvorkin EN, Goldschmit MB (2005) Nonlinear continua. Springer, BerlinGoogle Scholar
  25. 25.
    Dvorkin EN (1992) On nonlinear analysis of shells using finite elements based on mixed interpolation of tensorial components. In: Rammerstorfer F (ed) Nonlinear analysis of shells by finite elements. Springer, New YorkGoogle Scholar
  26. 26.
    Gebhardt H, Schweizerhof K (1993) Interpolation of curved shell geometries by low order finite elements—errors and modifications. Int J Numer Methods Eng 36:287–302zbMATHCrossRefGoogle Scholar
  27. 27.
    Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkzbMATHGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.SIM&TECBuenos AiresArgentina

Personalised recommendations