Skip to main content

Arbitrary-Shape Object Localization Using Adaptive Image Grids

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

Sliding-window based search is a widely used technique for object localization. However, for objects of non-rectangle shapes, noises in windows may mislead the localization, causing unsatisfactory results. In this paper, we propose an efficient bottom-up approach for detecting arbitrary-shape objects using image grids as basic components. First, a test image is partitioned into n×n grids and the object is localized by finding a set of connected grids which maximize the classifier’s response. Then, graph cut segmentation is used to improve the object boundary by utilizing local image context. Instead of using bounding boxes, the proposed approach searches connected regions of any shapes. With the graph cut refinement, our approach can start with coarse image grids and is robust to noises. To make image grids better cover the object of arbitrary shape, we also propose a fast adaptive grid partition method which takes image content into account and can be efficiently implemented by dynamic programming. The use of adaptive partition further improves the localization accuracy of our approach. Experiments on PASCAL VOC 2007 and VOC 2008 datasets demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Roth, D.: Learning a Sparse Representation for Object Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: From Contours to Regions: An Empirical Evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2294–2301 (2009)

    Google Scholar 

  3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110, 346–359 (2008)

    Article  Google Scholar 

  4. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision, pp. 105–112 (2001)

    Google Scholar 

  5. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transaction on Pattern Analysis and Machine Intelligence 26, 1124–1137 (2004)

    Article  Google Scholar 

  6. Chum, O., Zisserman, A.: An exemplar model for learning object classes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  7. Dai, Q., Hoiem, D.: Learning to localize Detected Objects. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3322–3329 (2012)

    Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2008 Results (2008), http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html

  10. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object Detection with Discriminatively Trained Part-Based Models. IEEE Transaction on Pattern Analysis and Machine Intelligence 32, 1627–1645 (2010)

    Article  Google Scholar 

  11. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE Transaction on Pattern Analysis and Machine Intelligence 14, 36–51 (2008)

    Article  Google Scholar 

  12. Fritz, M., Schiele, B.: Decomposition, discovery and detection of visual categories using topic models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  13. Fulkerson, B., Vedaldi, A., Soatto, S.: Class Segmentation and Object Localization with Superpixel Neighborhoods. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 670–677 (2009)

    Google Scholar 

  14. Jiang, Y., Meng, J., Yuan, J.: Grid-based Local Feature Bundling for Efficient Object Search. In: IEEE International Conference and Image Processing, pp. 113–116 (2011)

    Google Scholar 

  15. Jiang, Y., Meng, J., Yuan, J.: Randomized Visual Phrases for Object Search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3100–3107 (2012)

    Google Scholar 

  16. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient Subwindow Search: A Branch and Bound Framework for Object Localization. IEEE Transaction on Pattern Analysis and Machine Intelligence 31, 2129–2142 (2009)

    Article  Google Scholar 

  17. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision 77, 259–289 (2008)

    Article  Google Scholar 

  18. Opelt, A., Pinz, A., Zisserman, A.: A Boundary-Fragment-Model for Object Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Parkhi, O.M., Vedaldi, A., Jawahar, C.V., Zisserman, A.: The truth about cats and dogs. In: IEEE International Conference on Computer Vision, pp. 6–13 (2011)

    Google Scholar 

  20. Ramanan, D.: Using segmentation to verify object hypotheses. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 18–23 (2007)

    Google Scholar 

  21. Razavi, N., Gall, J., Van Gool, L.: Scalable Multi-class Object Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1505–1512 (2011)

    Google Scholar 

  22. Rihan, J., Kohli, P., Torr, P.H.S.: OBJCUT for Face Detection. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 576–584. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Russakovsky, O., Ng, A.Y.: A Steiner tree approach to efficient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1070–1077 (2010)

    Google Scholar 

  24. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple Kernels for Object Detection. In: IEEE International Conference on Computer Vision, pp. 606–613 (2009)

    Google Scholar 

  25. Vijayanarasimhan, S., Grauman, K.: Efficient Region Search for Object Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1401–1408 (2011)

    Google Scholar 

  26. Yeh, T., Lee, J.J., Darrell, T.: Fast Concurrent Object Localization and Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2009)

    Google Scholar 

  27. Zhang, Z., Cao, Y., Salvi, D., Oliver, K., Waggoner, J., Wang, S.: Free-Shape Subwindow Search for Object Localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1086–1093 (2010)

    Google Scholar 

  28. Zhao, L., Davis, L.S.: Closely coupled object detection and segmentation. In: IEEE International Conference on Computer Vision, pp. 454–461 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, C., Yuan, J. (2013). Arbitrary-Shape Object Localization Using Adaptive Image Grids. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics