Skip to main content

Local Context Priors for Object Proposal Generation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Abstract

State-of-the-art methods for object detection are mostly based on an expensive exhaustive search over the image at different scales. In order to reduce the computational time, one can perform a selective search to obtain a small subset of relevant object hypotheses that need to be evaluated by the detector. For that purpose, we employ a regression to predict possible object scales and locations by exploiting the local context of an image. Furthermore, we show how a priori information, if available, can be integrated to improve the prediction. The experimental results on three datasets including the Caltech pedestrian and PASCAL VOC dataset show that our method achieves the detection performance of an exhaustive search approach with much less computational load. Since we model the prior distribution over the proposals locally, it generalizes well and can be successfully applied across datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)

    Article  Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  3. Viola, P., Jones, M.: Robust real-time face detection. IJCV 57, 137–154 (2004)

    Article  Google Scholar 

  4. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. TPAMI 32 (2010)

    Google Scholar 

  5. Lampert, C., Blaschko, M., Hofmann, T.: Efficient Subwindow Search: A Branch and Bound Framework for Object Localization. TPAMI 31, 2129–2142 (2009)

    Article  Google Scholar 

  6. Zhang, Z., Warrell, J., Torr, P.: Proposal generation for object detection using cascaded ranking SVMs. In: CVPR (2011)

    Google Scholar 

  7. Gualdi, G., Prati, A., Cucchiara, R.: Multi-stage Sampling with Boosting Cascades for Pedestrian Detection in Images and Videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 196–209. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Rahtu, E., Kannala, J., Blaschko, M.: Learning a category independent object detection cascade. In: ICCV (2011)

    Google Scholar 

  9. van de Sande, K., Uijlings, J., Gevers, T., Smeulders, A.: Segmentation as selective search for object recognition. In: ICCV (2011)

    Google Scholar 

  10. Alexe, B., Thomas, D., Ferrari, V.: What is an object? In: CVPR (2010)

    Google Scholar 

  11. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. TPAMI (2011)

    Google Scholar 

  12. Zhu, L., Chen, Y., Yuille, A., Freeman, W.: Latent hierarchical structural learning for object detection. In: CVPR (2010)

    Google Scholar 

  13. Pedersoli, M., Vedaldi, A.: Gonzàlez: A coarse-to-fine approach for fast deformable object detection. In: CVPR (2011)

    Google Scholar 

  14. Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Computationally efficient face detection. In: ICCV (2001)

    Google Scholar 

  15. Brubaker, S.C., Mullin, M.D., Rehg, J.M.: Towards Optimal Training of Cascaded Detectors. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 325–337. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Zhang, W., Zelinsky, G., Samaras, D.: Real-time accurate object detection using multiple resolutions. In: ICCV (2007)

    Google Scholar 

  17. Felzenszwalb, P., Girshick, R., McAllester, D.: Cascade object detection with deformable part models. In: CVPR (2010)

    Google Scholar 

  18. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral Channel Features. In: BMVC (2009)

    Google Scholar 

  19. Lampert, C.: An efficient divide-and-conquer cascade for nonlinear object detection. In: CVPR (2010)

    Google Scholar 

  20. Lehmann, A., Gehler, P., Van Gool, L.: Branch & rank: Non-linear object detection. In: BMVC (2011)

    Google Scholar 

  21. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: ICCV (2009)

    Google Scholar 

  22. Chum, O., Zisserman, A.: An exemplar model for learning object classes. In: CVPR (2007)

    Google Scholar 

  23. Russakovsky, O., Ng, A.: A steiner tree approach to efficient object detection. In: CVPR (2010)

    Google Scholar 

  24. Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. IJCV 80 (2008)

    Google Scholar 

  25. Torralba, A., Murphy, K., Freeman, W.: Using the forest to see the trees: exploiting context for visual object detection and localization. Commun. ACM 53, 107–114 (2010)

    Article  Google Scholar 

  26. Desai, C., Ramanan, D., Fowlkes, C.: Discriminative models for multi-class object layout. In: ICCV (2009)

    Google Scholar 

  27. Divvala, S., Hoiem, D., Hays, J., Efros, A., Hebert, M.: An empirical study of context in object detection. In: CVPR (2009)

    Google Scholar 

  28. Sadeghi, M., Farhadi, A.: Recognition using visual phrases. In: CVPR (2011)

    Google Scholar 

  29. Li, C., Parikh, D., Chen, T.: Extracting adaptive contextual cues from unlabeled regions. In: ICCV (2011)

    Google Scholar 

  30. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  31. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for Efficient Anatomy Detection and Localization in CT Studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.S.: Hough forests for object detection, tracking, and action recognition. TPAMI 33, 2188–2202 (2011)

    Article  Google Scholar 

  33. Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random regression forests. In: CVPR (2011)

    Google Scholar 

  34. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regression of general-activity human poses from depth images. In: ICCV (2011)

    Google Scholar 

  35. Leibe, B., Cornelis, N., Cornelis, K., Van Gool, L.: Dynamic 3d scene analysis from a moving vehicle. In: CVPR (2007)

    Google Scholar 

  36. Dollár, P., Tu, Z., Tao, H., Belongie, S.: Feature mining for image classification. In: CVPR (2007)

    Google Scholar 

  37. Crow, F.: Summed-area tables for texture mapping. SIGGRAPH Comput. Graph. 18, 207–212 (1984)

    Article  Google Scholar 

  38. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: ICCV (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ristin, M., Gall, J., Van Gool, L. (2013). Local Context Priors for Object Proposal Generation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics