Skip to main content

Relative Forest for Attribute Prediction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Abstract

Human-Namable visual attributes are promising in leveraging various recognition tasks. Intuitively, the more accurate the attribute prediction is, the more the recognition tasks can benefit. Relative attributes [1] learns a ranking function per attribute which can provide more accurate attribute prediction, thus, show clear advantages over previous binary attribute. In this paper, we inherit the idea of learning ranking function per attribute but propose to improve the algorithm in two aspects: First, we propose a Relative Tree algorithm which facilitates more accurate nonlinear ranking to capture the semantic relationships. Second, we develop a Relative Forest algorithm which resorts to randomized learning to reduce training time of Relative Tree. Benefiting from multiple tree ensemble, Relative Forest can achieve even more accurate final ranking. To show the effectiveness of proposed method, we first compare Relative Tree method with Relative Attribute on PubFig and OSR dataset. Then to verify the efficiency of Relative Forest algorithm, we conduct age estimation evaluation on FG-NET dataset. With much less training time compared to Relative Attribute and Relative Tree, proposed Relative Forest achieves state-of-the-art age estimation accuracy. Finally, experiments on the large scale SUN Attribute database show the scalability of proposed Relative Forest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parikh, D., Grauman, K.: Relative attributes. In: ICCV, pp. 503–510 (2011)

    Google Scholar 

  2. Kumar, N., Berg, A., Belhumeur, P., Nayar, S.: Attribute and simile classifiers for face verification. In: ICCV, pp. 365–372 (2009)

    Google Scholar 

  3. Yao, B., Jiang, X., Khosla, A., Lin, A., Guibas, L., Fei-Fei, L.: Human action recognition by learning bases of action attributes and parts. In: ICCV, pp. 1331–1338 (2011)

    Google Scholar 

  4. Wang, J., Markert, K., Everingham, M.: Learning models for object recognition from natural language descriptions. In: BMVC (2009)

    Google Scholar 

  5. Wang, G., Forsyth, D.: Joint learning of visual attributes, object classes and visual saliency. In: ICCV, pp. 537–544 (2009)

    Google Scholar 

  6. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR, pp. 1778–1785 (2009)

    Google Scholar 

  7. Bourdev, L., Maji, S., Malik, J.: Describing people: A poselet-based approach to attribute classification. In: ICCV, pp. 1543–1550 (2011)

    Google Scholar 

  8. Siddiquie, B., Feris, R., Davis, L.: Image ranking and retrieval based on multi-attribute queries. In: CVPR, pp. 801–808 (2011)

    Google Scholar 

  9. Fergus, R., Bernal, H., Weiss, Y., Torralba, A.: Semantic Label Sharing for Learning with Many Categories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 762–775. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR, pp. 951–958 (2009)

    Google Scholar 

  11. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  12. Patterson, G., Hays, J.: Sun attribute database:discovering, annotating, and recognizing scene attributes. In: CVPR, pp. 2751–2758 (2012)

    Google Scholar 

  13. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: CVPR, pp. 3485–3492 (2010)

    Google Scholar 

  14. Breiman, L.: Random forests. Machine Learning, 5–32 (2001)

    Google Scholar 

  15. Joachims, T.: Optimizing search engines using clickthrough data. In: SIGKDD, pp. 133–142 (2002)

    Google Scholar 

  16. Freund, Y., Dasgupta, S., Kabra, M., Verma, N.: Learning the structure of manifolds using random projections. In: NIPS, pp. 473–480 (2007)

    Google Scholar 

  17. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning, 3–42 (2006)

    Google Scholar 

  18. Bosch, A., Zisserman, A., Muoz, X.: Image classification using random forests and ferns. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  19. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation, 1545–1588 (1997)

    Google Scholar 

  20. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 145–175 (2001)

    Google Scholar 

  21. FGNET: The fg-net aging database (2002), http://sting.cycollege.ac.cy/~alanitis/fgnetaging/index.html

  22. Guo, G., Fu, Y., Dyer, C., Huang, T.: Image-based human age estimation by manifold learning and locally adjusted robust regression. TIP, 1178–1188 (2008)

    Google Scholar 

  23. Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. TIP, 3608–3614 (2006)

    Google Scholar 

  24. Chang, K., Chen, C., Hung, Y.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: CVPR, pp. 585–592 (2011)

    Google Scholar 

  25. Zhang, Y., Yeung, D.: Multi-task warped gaussian process for personalized age estimation. In: CVPR, pp. 2622–2629 (2010)

    Google Scholar 

  26. Qin, T., Zhang, X., Wang, D., Liu, T., Lai, W., Li, H.: Ranking with multiple hyperplanes. In: SIGIR, pp. 279–286 (2007)

    Google Scholar 

  27. Chang, C., Lin, C.: Libsvm: a library for support vector machines. TIST 27 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S., Shan, S., Chen, X. (2013). Relative Forest for Attribute Prediction. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics