Skip to main content

A Review of Magnetic Phenomena in Probe-Brane Holographic Matter

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

Gauge/gravity duality is a useful and efficient tool for addressing and studying questions related to strongly interacting systems described by a gauge theory. In this manuscript we will review a number of interesting phenomena that occur in such systems when a background magnetic field is turned on. Specifically, we will discuss holographic models for systems that include matter fields in the fundamental representation of the gauge group, which are incorporated by adding probe branes into the gravitational background dual to the gauge theory. We include three models in this review: the D3–D7 and D4–D8 models, that describe four-dimensional systems, and the D3–D7’ model, that describes three-dimensional fermions interacting with a four-dimensional gauge field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    However note that the scale-invariance is broken at the quantum level since the beta function is proportional to N f /N c and therefore non-vanishing. In the limit N c →∞ with N f being fixed, the beta function is approximately zero, i.e. we may treat the theory as being scale invariant also at the quantum level.

  2. 2.

    For simplicity, we will consider the single flavor case with one D8-brane and one anti-D8-brane. This does not affect any of the results qualitatively.

  3. 3.

    Note that, although the boundary value is non-zero, this is a normalizable mode since the field strength is normalizable. Ordinarily, boundary values of bulk fields correspond to parameters in the boundary theory. But in this case there is a possible ambiguity, since the boundary value of \(a^{A}_{\mu}\) can also describe a non-trivial gradient of the pseudoscalar field.

  4. 4.

    For N f >1 the baryons correspond to instantons in the non-abelian D8-brane theory [11, 45]. This reproduces the known description of baryons as Skyrmions in the chiral Lagrangian. In this description the baryon charge comes from the CS term coupling the U(1) V field to the instanton density in the SU(N f ) V part.

  5. 5.

    The axial symmetry is broken by an anomaly. However this is a subleading effect at large N c which we can neglect. In particular, we will assume that the one-flavor pseudoscalar η′ is massless. For a discussion of the U(1) A anomaly and the η′ mass in the context of the Sakai-Sugimoto model see [11, 47].

  6. 6.

    We would like to stress that this is a gauge invariant definition. The standard boundary condition on the gauge field in AdS/CFT fixes the value of a M (u→∞). In this case only the transformations that vanish at u→∞ are gauged in the bulk. In particular, these transformations do not change the asymptotic value of a 0.

  7. 7.

    At non-zero baryon number density the magnetic field can actually induce an inverse magnetic catalysis in this model [53, 54].

  8. 8.

    Other boundary terms at u→∞ could affect the on-shell action, and therefore the currents. See for example [60, 61].

  9. 9.

    This is also consistent with the fact that there are no quarks in this phase to carry such a current.

  10. 10.

    Strictly speaking, at zero temperature the theory is in the confining (and broken chiral symmetry) phase. We are considering the meta-stable state obtained by adiabatically reducing the temperature.

  11. 11.

    In [15] this term was derived by demanding invariance of the CS term ∫C 4FF under gauge transformations of the RR field and then fixing c(∞)=0. However it can also be obtained by canceling the surface term in the variation of the CS term, when we present it as ∫F 5AF.

References

  1. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions. Phys. Rev. Lett. 73, 3499–3502 (1994)

    Article  ADS  Google Scholar 

  2. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)-dimensions. Phys. Lett. B 349, 477–483 (1995)

    Article  ADS  Google Scholar 

  3. V.A. Miransky, I.A. Shovkovy, Magnetic catalysis and anisotropic confinement in QCD. Phys. Rev. D 66, 045006 (2002)

    Article  ADS  Google Scholar 

  4. D.T. Son, M.A. Stephanov, Axial anomaly and magnetism of nuclear and quark matter. Phys. Rev. D 77, 014021 (2008)

    Article  ADS  Google Scholar 

  5. K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  6. M.N. Chernodub, Superconductivity of QCD vacuum in strong magnetic field. Phys. Rev. D 82, 085011 (2010)

    Article  ADS  Google Scholar 

  7. M.N. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu–Jona-Lasinio model. Phys. Rev. Lett. 106, 142003 (2011)

    Article  ADS  Google Scholar 

  8. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  Google Scholar 

  9. R.B. Laughlin, Anomalous quantum Hall effect—an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  ADS  Google Scholar 

  10. A. Karch, E. Katz, Adding flavor to AdS/CFT. J. High Energy Phys. 0206, 043 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Sakai, S. Sugimoto, Low energy hadron physics in holographic QCD. Prog. Theor. Phys. 113, 843–882 (2005)

    Article  ADS  MATH  Google Scholar 

  12. S.-J. Rey, Talk given at Strings 2007 in Madrid, 2007

    Google Scholar 

  13. S.-J. Rey, String theory on thin semiconductors: holographic realization of Fermi points and surfaces. Prog. Theor. Phys. Suppl. 177, 128–142 (2009)

    Article  ADS  MATH  Google Scholar 

  14. J.L. Davis, P. Kraus, A. Shah, Gravity dual of a quantum Hall plateau transition. J. High Energy Phys. 0811, 020 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. O. Bergman, N. Jokela, G. Lifschytz, M. Lippert, Quantum Hall effect in a holographic model. J. High Energy Phys. 1010, 063 (2010)

    Article  ADS  Google Scholar 

  16. K. Jensen, A. Karch, D.T. Son, E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless transitions. Phys. Rev. Lett. 105, 041601 (2010)

    Article  ADS  Google Scholar 

  17. N. Evans, A. Gebauer, K.-Y. Kim, M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition. Phys. Lett. B 698, 91–95 (2011)

    Article  ADS  Google Scholar 

  18. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  19. J. Erdmenger, N. Evans, I. Kirsch, E. Threlfall, Mesons in gauge/gravity duals—a review. Eur. Phys. J. A 35, 81–133 (2008)

    Article  ADS  Google Scholar 

  20. M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, Meson spectroscopy in AdS/CFT with flavor. J. High Energy Phys. 0307, 049 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik, I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals. Phys. Rev. D 69, 066007 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  22. V.G. Filev, C.V. Johnson, R.C. Rashkov, K.S. Viswanathan, Flavoured large N gauge theory in an external magnetic field. J. High Energy Phys. 0710, 019 (2007)

    Article  ADS  Google Scholar 

  23. J. Erdmenger, R. Meyer, J.P. Shock, AdS/CFT with flavour in electric and magnetic Kalb-Ramond fields. J. High Energy Phys. 0712, 091 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. V.G. Filev, R.C. Raskov, Magnetic catalysis of chiral symmetry breaking. A holographic prospective. Adv. High Energy Phys. 2010, 473206 (2010)

    Google Scholar 

  25. V.G. Filev, D. Zoakos, Towards unquenched holographic magnetic catalysis. J. High Energy Phys. 1108, 022 (2011)

    Article  ADS  Google Scholar 

  26. J. Erdmenger, V.G. Filev, D. Zoakos, Magnetic catalysis with massive dynamical flavours (2011)

    Google Scholar 

  27. M. Ammon, V.G. Filev, J. Tarrio, D. Zoakos, D3/D7 quark-gluon plasma with magnetically induced anisotropy. J. High Energy Phys. 1209, 039 (2012)

    Article  ADS  Google Scholar 

  28. N. Evans, T. Kalaydzhyan, K.-y. Kim, I. Kirsch, Non-equilibrium physics at a holographic chiral phase transition. J. High Energy Phys. 1101, 050 (2011)

    Article  ADS  Google Scholar 

  29. N. Evans, A. Gebauer, K.-Y. Kim, M. Magou, Holographic description of the phase diagram of a chiral symmetry breaking gauge theory. J. High Energy Phys. 1003, 132 (2010)

    Article  ADS  Google Scholar 

  30. K. Jensen, A. Karch, E.G. Thompson, A holographic quantum critical point at finite magnetic field and finite density. J. High Energy Phys. 1005, 015 (2010)

    Article  ADS  Google Scholar 

  31. N. Evans, A. Gebauer, K.-Y. Kim, E, B, μ, T phase structure of the D3/D7 holographic dual. J. High Energy Phys. 1105, 067 (2011)

    Article  ADS  Google Scholar 

  32. M. Ammon, J. Erdmenger, M. Kaminski, P. Kerner, Superconductivity from gauge/gravity duality with flavor. Phys. Lett. B 680, 516–520 (2009)

    Article  ADS  Google Scholar 

  33. M. Ammon, J. Erdmenger, M. Kaminski, P. Kerner, Flavor superconductivity from gauge/gravity duality. J. High Energy Phys. 0910, 067 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. O. Aharony, K. Peeters, J. Sonnenschein, M. Zamaklar, Rho meson condensation at finite isospin chemical potential in a holographic model for QCD. J. High Energy Phys. 0802, 071 (2008)

    Article  ADS  Google Scholar 

  35. A. Rebhan, A. Schmitt, S.A. Stricker, Meson supercurrents and the Meissner effect in the Sakai-Sugimoto model. J. High Energy Phys. 0905, 084 (2009)

    Article  ADS  Google Scholar 

  36. J. Erdmenger, P. Kerner, M. Strydom, Holographic superconductors at finite isospin density or in an external magnetic field. PoS FacesQCD, 004 (2010)

    Google Scholar 

  37. M. Ammon, J. Erdmenger, P. Kerner, M. Strydom, Black hole instability induced by a magnetic field. Phys. Lett. B 706, 94–99 (2011)

    Article  ADS  Google Scholar 

  38. A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT. Phys. Rev. D 76, 086007 (2007)

    Article  ADS  Google Scholar 

  39. Y.-Y. Bu, J. Erdmenger, J.P. Shock, M. Strydom, Magnetic field induced lattice ground states from holography. J. High Energy Phys. 1303, 165 (2013)

    Article  ADS  Google Scholar 

  40. V.V. Braguta, P.V. Buividovich, M.N. Chernodub, A.Yu. Kotov, M.I. Polikarpov, Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory. Phys. Lett. B 718, 667–671 (2012)

    Article  ADS  Google Scholar 

  41. J. Ambjorn, P. Olesen, Electroweak magnetism: theory and application. Int. J. Mod. Phys. A 5, 4525–4558 (1990)

    Article  ADS  Google Scholar 

  42. N. Callebaut, D. Dudal, H. Verschelde, Holographic study of rho meson mass in an external magnetic field: paving the road towards a magnetically induced superconducting QCD vacuum? PoS FacesQCD, 046 (2010)

    Google Scholar 

  43. N. Callebaut, D. Dudal, H. Verschelde, Holographic rho mesons in an external magnetic field. J. High Energy Phys. 1303, 033 (2013)

    Article  ADS  Google Scholar 

  44. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998)

    MathSciNet  MATH  Google Scholar 

  45. H. Hata, T. Sakai, S. Sugimoto, S. Yamato, Baryons from instantons in holographic QCD. Prog. Theor. Phys. 117, 1157 (2007)

    Article  ADS  MATH  Google Scholar 

  46. O. Aharony, J. Sonnenschein, S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration. Ann. Phys. 322, 1420–1443 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. O. Bergman, G. Lifschytz, Holographic U(1) A and string creation. J. High Energy Phys. 0704, 043 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  48. O. Bergman, G. Lifschytz, M. Lippert, Holographic nuclear physics. J. High Energy Phys. 0711, 056 (2007)

    Article  ADS  Google Scholar 

  49. J.L. Davis, M. Gutperle, P. Kraus, I. Sachs, Stringy NJL and Gross-Neveu models at finite density and temperature. J. High Energy Phys. 0710, 049 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Rozali, H.-H. Shieh, M. Van Raamsdonk, J. Wu, Cold nuclear matter in holographic QCD. J. High Energy Phys. 0801, 053 (2008)

    Article  ADS  Google Scholar 

  51. O. Bergman, G. Lifschytz, M. Lippert, Response of holographic QCD to electric and magnetic fields. J. High Energy Phys. 0805, 007 (2008)

    Article  ADS  Google Scholar 

  52. C.V. Johnson, A. Kundu, External fields and chiral symmetry breaking in the Sakai-Sugimoto model. J. High Energy Phys. 0812, 053 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  53. F. Preis, A. Rebhan, A. Schmitt, Inverse magnetic catalysis in dense holographic matter. J. High Energy Phys. 1103, 033 (2011)

    Article  ADS  Google Scholar 

  54. F. Preis, A. Rebhan, A. Schmitt, Holographic baryonic matter in a background magnetic field. J. Phys. G 39, 054006 (2012)

    Article  ADS  Google Scholar 

  55. C.V. Johnson, A. Kundu, Meson spectra and magnetic fields in the Sakai-Sugimoto model. J. High Energy Phys. 0907, 103 (2009)

    Article  ADS  Google Scholar 

  56. M.A. Metlitski, A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 72, 045011 (2005)

    Article  ADS  Google Scholar 

  57. G.M. Newman, D.T. Son, Response of strongly-interacting matter to magnetic field: some exact results. Phys. Rev. D 73, 045006 (2006)

    Article  ADS  Google Scholar 

  58. C. Hoyos, T. Nishioka, A. O’Bannon, A chiral magnetic effect from AdS/CFT with flavor. J. High Energy Phys. 1110, 084 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  59. O. Bergman, G. Lifschytz, M. Lippert, Magnetic properties of dense holographic QCD. Phys. Rev. D 79, 105024 (2009)

    Article  ADS  Google Scholar 

  60. A. Rebhan, A. Schmitt, S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model. J. High Energy Phys. 1001, 026 (2010)

    Article  ADS  Google Scholar 

  61. A. Rebhan, A. Schmitt, S. Stricker, Holographic chiral currents in a magnetic field. Prog. Theor. Phys. Suppl. 186, 463–470 (2010)

    Article  ADS  MATH  Google Scholar 

  62. E.G. Thompson, D.T. Son, Magnetized baryonic matter in holographic QCD. Phys. Rev. D 78, 066007 (2008)

    Article  ADS  Google Scholar 

  63. G. Lifschytz, M. Lippert, Holographic magnetic phase transition. Phys. Rev. D 80, 066007 (2009)

    Article  ADS  Google Scholar 

  64. G. Lifschytz, M. Lippert, Anomalous conductivity in holographic QCD. Phys. Rev. D 80, 066005 (2009)

    Article  ADS  Google Scholar 

  65. N. Jokela, M. Jarvinen, M. Lippert, A holographic quantum Hall model at integer filling. J. High Energy Phys. 1105, 101 (2011)

    Article  ADS  Google Scholar 

  66. R.C. Myers, M.C. Wapler, Transport properties of holographic defects. J. High Energy Phys. 0812, 115 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  67. N. Jokela, G. Lifschytz, M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid. J. High Energy Phys. 1102, 104 (2011)

    Article  ADS  Google Scholar 

  68. N. Jokela, M. Jarvinen, M. Lippert, Fluctuations of a holographic quantum Hall fluid. J. High Energy Phys. 1201, 072 (2012)

    Article  ADS  Google Scholar 

  69. S.M. Girvin, A.H. MacDonald, P.M. Platzman, Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B 33, 2481–2494 (1986)

    Article  ADS  Google Scholar 

  70. A. Karch, A. O’Bannon, Metallic AdS/CFT. J. High Energy Phys. 0709, 024 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  71. O. Bergman, N. Jokela, G. Lifschytz, M. Lippert, Striped instability of a holographic Fermi-like liquid. J. High Energy Phys. 1110, 034 (2011)

    Article  ADS  Google Scholar 

  72. N. Jokela, G. Lifschytz, M. Lippert, Magnetic effects in a holographic Fermi-like liquid. J. High Energy Phys. 1205, 105 (2012)

    Article  ADS  Google Scholar 

  73. R.A. Davison, A.O. Starinets, Holographic zero sound at finite temperature. Phys. Rev. D 85, 026004 (2012)

    Article  ADS  Google Scholar 

  74. M. Goykhman, A. Parnachev, J. Zaanen, Fluctuations in finite density holographic quantum liquids. J. High Energy Phys. 1210, 045 (2012)

    Article  ADS  Google Scholar 

  75. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

O.B. and G.L. would like to thank Matt Lippert and Niko Jokela, who were an integral part in all our work on the models reviewed in Sects. 22.3 and 22.4. O.B. also thanks the Aspen Center for Physics, where this work was completed, for its hospitality. J.E. would like to thank her collaborators Martin Ammon, Matthias Kaminski, Patrick Kerner, René Meyer, Jonathan Shock and Migael Strydom, involved in the joint work presented in Sect. 22.2. This work was supported in part by the Israel Science Foundation under grant No. 392/09, and in part by the US-Israel Binational Science Foundation under grant No. 2008-072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Bergman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergman, O., Erdmenger, J., Lifschytz, G. (2013). A Review of Magnetic Phenomena in Probe-Brane Holographic Matter. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_22

Download citation

Publish with us

Policies and ethics