Skip to main content

Holography, Fractionalization and Magnetic Fields

  • Chapter
Strongly Interacting Matter in Magnetic Fields

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

Four dimensional gravity with a U(1) gauge field, coupled to various fields in asymptotically anti-de Sitter spacetime, provides a rich arena for the holographic study of the strongly coupled (2+1)-dimensional dynamics of finite density matter charged under a global U(1). As a first step in furthering the study of the properties of fractionalized and partially fractionalized degrees of freedom in the strongly coupled theory, we construct electron star solutions at zero temperature in the presence of a background magnetic field. We work in Einstein–Maxwell-dilaton theory. In all cases we construct, the magnetic source is cloaked by an event horizon. A key ingredient of our solutions is our observation that starting with the standard Landau level structure for the density of states, the electron star limits reduce the charge density and energy density to that of the free fermion result. Using this result we construct three types of solution: One has a star in the infra-red with an electrically neutral horizon, another has a star that begins at an electrically charged event horizon, and another has the star begin a finite distance from an electrically charged horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The idea that these holographic systems may capture the dynamics of fractionalized phases seems to have first begun to emerge in the work of Ref. [23] in their semi-holographic approach to the low energy physics. There, they used the term “quasiunparticle” for the effective particles in the unfractionalized phase. In work dedicated to addressing the issue, Ref. [24] further elucidated the connection between holographic physics and fractionalized phases. See Refs. [9, 10] for a review of some of these ideas.

  2. 2.

    We emphasize that our work is both qualitatively and quantitatively different from Ref. [34]. Their work is in five dimensions, for a spherical star, and their TOV treatment involves an electrically neutral star.

References

  1. J.M. Maldacena, The large n limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105–114 (1998). hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). hep-th/9802150

    MathSciNet  ADS  MATH  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large n field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000). hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Witten, Anti-de sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998). hep-th/9803131

    MathSciNet  MATH  Google Scholar 

  6. J. McGreevy, Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010). arXiv:0909.0518 [hep-th]

    Google Scholar 

  7. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009). arXiv:0903.3246 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  8. C.P. Herzog, Lectures on holographic superfluidity and superconductivity. J. Phys. A 42, 343001 (2009). arXiv:0904.1975 [hep-th]

    Article  MathSciNet  Google Scholar 

  9. S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics? Annu. Rev. Condens. Matter Phys. 3(1), 9–33 (2012)

    Article  Google Scholar 

  10. S.A. Hartnoll, Horizons, holography and condensed matter. arXiv:1106.4324 [hep-th]

  11. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999). hep-th/9902170

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999). hep-th/9904197

    Article  MathSciNet  ADS  Google Scholar 

  13. S.A. Hartnoll, P. Kovtun, Hall conductivity from dyonic black holes. Phys. Rev. D 76, 066001 (2007). arXiv:0704.1160 [hep-th]

    Article  ADS  Google Scholar 

  14. S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007). arXiv:0706.3215 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  15. S.A. Hartnoll, C.P. Herzog, Ohm’s law at strong coupling: S duality and the cyclotron resonance. Phys. Rev. D 76, 106012 (2007). arXiv:0706.3228 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  16. S.-S. Lee, A Non-Fermi liquid from a charged black hole: a critical Fermi ball. Phys. Rev. D 79, 086006 (2009). arXiv:0809.3402 [hep-th]

    Article  ADS  Google Scholar 

  17. H. Liu, J. McGreevy, D. Vegh, Non-Fermi liquids from holography. arXiv:0903.2477 [hep-th]

  18. M. Cubrovic, J. Zaanen, K. Schalm, String theory, quantum phase transitions, and the emergent Fermi liquid. Science 325, 439–444 (2009). arXiv:0904.1993 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  19. T. Faulkner, H. Liu, J. McGreevy, D. Vegh, Emergent quantum criticality, Fermi surfaces, and AdS2. Phys. Rev. D 83, 125002 (2011). arXiv:0907.2694 [hep-th]

    Article  ADS  Google Scholar 

  20. S.A. Hartnoll, A. Tavanfar, Electron stars for holographic metallic criticality. Phys. Rev. D 83, 046003 (2011). arXiv:1008.2828 [hep-th]

    Article  ADS  Google Scholar 

  21. S. Kachru, X. Liu, M. Mulligan, Gravity duals of Lifshitz-like fixed points. Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  22. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Faulkner, J. Polchinski, Semi-holographic Fermi liquids. arXiv:1001.5049 [hep-th]

  24. S. Sachdev, Holographic metals and the fractionalized Fermi liquid. Phys. Rev. Lett. 105, 151602 (2010). arXiv:1006.3794 [hep-th]

    Article  ADS  Google Scholar 

  25. S.A. Hartnoll, D.M. Hofman, A. Tavanfar, Holographically smeared Fermi surface: quantum oscillations and Luttinger count in electron stars. Europhys. Lett. 95, 31002 (2011). arXiv:1011.2502 [hep-th]

    Article  ADS  Google Scholar 

  26. N. Iqbal, H. Liu, M. Mezei, Semi-local quantum liquids. J. High Energy Phys. 1204, 086 (2012). arXiv:1105.4621 [hep-th]

    Article  ADS  Google Scholar 

  27. S. Sachdev, A model of a Fermi liquid using gauge-gravity duality. Phys. Rev. D 84, 066009 (2011). arXiv:1107.5321 [hep-th]

    Article  ADS  Google Scholar 

  28. L. Huijse, S. Sachdev, Fermi surfaces and gauge-gravity duality. Phys. Rev. D 84, 026001 (2011). arXiv:1104.5022 [hep-th]

    Article  ADS  Google Scholar 

  29. S.A. Hartnoll, L. Huijse, Fractionalization of holographic Fermi surfaces. arXiv:1111.2606 [hep-th]

  30. M. Cvetic, S.S. Gubser, Thermodynamic stability and phases of general spinning branes. J. High Energy Phys. 07, 010 (1999). hep-th/9903132

    Article  MathSciNet  ADS  Google Scholar 

  31. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939). http://link.aps.org/doi/10.1103/PhysRev.55.374

    Article  ADS  MATH  Google Scholar 

  32. R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939). http://link.aps.org/doi/10.1103/PhysRev.55.364

    Article  ADS  Google Scholar 

  33. J. de Boer, K. Papadodimas, E. Verlinde, Holographic neutron stars. J. High Energy Phys. 1010, 020 (2010). arXiv:0907.2695 [hep-th]

    Article  Google Scholar 

  34. P. Burikham, T. Chullaphan, Holographic magnetic star. J. High Energy Phys. 1206, 021 (2012). arXiv:1203.0883 [hep-th]

    Article  ADS  Google Scholar 

  35. S.S. Gubser, F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS5. Phys. Rev. D 81, 046001 (2010). arXiv:0911.2898 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  36. J.D. Brown, Action functionals for relativistic perfect fluids. Class. Quant. Grav. 10, 1579–1606 (1993). arXiv:gr-qc/9304026 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  37. L. Bombelli, R.J. Torrence, Perfect fluids and Ashtekar variables, with applications to Kantowski-Sachs models. Class. Quant. Grav. 7(10), 1747 (1990). http://stacks.iop.org/0264-9381/7/i=10/a=008

    Article  MathSciNet  ADS  Google Scholar 

  38. R. de Ritis, M. Lavorgna, G. Platania, C. Stornaiolo, Charged spin fluid in the Einstein-Cartan theory. Phys. Rev. D 31, 1854–1859 (1985). http://link.aps.org/doi/10.1103/PhysRevD.31.1854

    Article  MathSciNet  ADS  Google Scholar 

  39. V.G.M. Puletti, S. Nowling, L. Thorlacius, T. Zingg, Holographic metals at finite temperature. J. High Energy Phys. 1101, 117 (2011). arXiv:1011.6261 [hep-th]

    Article  ADS  Google Scholar 

  40. S.A. Hartnoll, P. Petrov, Electron star birth: a continuous phase transition at nonzero density. Phys. Rev. Lett. 106, 121601 (2011). arXiv:1011.6469 [hep-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

TA, CVJ, and SM would like to thank the US Department of Energy for support under grant DE-FG03-84ER-40168. TA is also supported by the USC Dornsife College of Letters, Arts and Sciences. We thank Kristan Jensen, Joe Polchinski, and Herman Verlinde for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tameem Albash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albash, T., Johnson, C.V., McDonald, S. (2013). Holography, Fractionalization and Magnetic Fields. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_20

Download citation

Publish with us

Policies and ethics