Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

We give an overview of the magnetic catalysis phenomenon. In the framework of quantum field theory, magnetic catalysis is broadly defined as an enhancement of dynamical symmetry breaking by an external magnetic field. We start from a brief discussion of spontaneous symmetry breaking and the role of a magnetic field in its a dynamics. This is followed by a detailed presentation of the essential features of the phenomenon. In particular, we emphasize that the dimensional reduction plays a profound role in the pairing dynamics in a magnetic field. Using the general nature of underlying physics and its robustness with respect to interaction types and model content, we argue that magnetic catalysis is a universal and model-independent phenomenon. In support of this claim, we show how magnetic catalysis is realized in various models with short-range and long-range interactions. We argue that the general nature of the phenomenon implies a wide range of potential applications: from certain types of solid state systems to models in cosmology, particle and nuclear physics. We finish the review with general remarks about magnetic catalysis and an outlook for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261 (2010)

    ADS  Google Scholar 

  2. N. Agasian, Nonperturbative phenomena in QCD at finite temperature in a magnetic field. Phys. At. Nucl. 71, 1967 (2008)

    Google Scholar 

  3. A. Akhiezer, V. Berestetsky, Quantum Electrodynamics (Interscience, New York, 1965)

    Google Scholar 

  4. M.S. Alam, V.S. Kaplunovsky, A. Kundu, Chiral symmetry breaking and external fields in the Kuperstein-Sonnenschein model. J. High Energy Phys. 1204, 111 (2012). arXiv:1202.3488

    ADS  Google Scholar 

  5. J. Alexandre, K. Farakos, G. Koutsoumbas, Magnetic catalysis in QED(3) at finite temperature: beyond the constant mass approximation. Phys. Rev. D 63, 065015 (2001)

    ADS  Google Scholar 

  6. J. Alexandre, K. Farakos, G. Koutsoumbas, Remark on the momentum dependence of the magnetic catalysis in QED. Phys. Rev. D 64, 067702 (2001)

    ADS  Google Scholar 

  7. M.G. Alford, J. Berges, K. Rajagopal, Magnetic fields within color superconducting neutron star cores. Nucl. Phys. B 571, 269 (2000)

    ADS  Google Scholar 

  8. J.O. Andersen, R. Khan, Chiral transition in a magnetic field and at finite baryon density. Phys. Rev. D 85, 065026 (2012)

    ADS  Google Scholar 

  9. J.O. Andersen, A. Tranberg, The chiral transition in a magnetic background: finite density effects and the functional renormalization group. J. High Energy Phys. 1208, 002 (2012). arXiv:1204.3360

    ADS  Google Scholar 

  10. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providencia, The QCD critical end point under strong magnetic fields. Phys. Rev. D 85, 091901 (2012)

    ADS  Google Scholar 

  11. A. Ayala, A. Bashir, E. Gutierrez, A. Raya, A. Sanchez, Chiral and parity symmetry breaking for planar fermions: effects of a heat bath and uniform external magnetic field. Phys. Rev. D 82, 056011 (2010)

    ADS  Google Scholar 

  12. A. Ayala, A. Bashir, A. Raya, A. Sanchez, Impact of a uniform magnetic field and nonzero temperature on explicit chiral symmetry breaking in QED: arbitrary hierarchy of energy scales. J. Phys. G 37, 015001 (2010)

    ADS  Google Scholar 

  13. A.Y. Babansky, E. Gorbar, G. Shchepanyuk, Chiral symmetry breaking in the Nambu-Jona-Lasinio model in external constant electromagnetic field. Phys. Lett. B 419, 272 (1998)

    ADS  Google Scholar 

  14. G. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. Katz et al., The finite temperature QCD transition in external magnetic fields. PoS LATTICE2011, 192 (2011)

    Google Scholar 

  15. G. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. Katz et al., QCD quark condensate in external magnetic fields (2012). arXiv:1206.4205

  16. G. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. Katz et al., The QCD phase diagram for external magnetic fields. J. High Energy Phys. 1202, 044 (2012)

    ADS  Google Scholar 

  17. J. Bardeen, L. Cooper, J. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    MathSciNet  ADS  MATH  Google Scholar 

  18. G. Baym, D. Bodeker, L.D. McLerran, Magnetic fields produced by phase transition bubbles in the electroweak phase transition. Phys. Rev. D 53, 662 (1996)

    ADS  Google Scholar 

  19. R. Blankenbecler, M.L. Goldberger, B. Simon, The bound states of weakly coupled long-range one-dimensional quantum hamiltonians. Ann. Phys. 108, 69 (1977)

    MathSciNet  ADS  Google Scholar 

  20. S. Bolognesi, J.N. Laia, D. Tong, K. Wong, A gapless hard wall: magnetic catalysis in bulk and boundary (2012). arXiv:1204.6029

  21. S. Bolognesi, D. Tong, Magnetic catalysis in AdS4. Class. Quantum Gravity 29, 194003 (2012). arXiv:1110.5902

    MathSciNet  ADS  Google Scholar 

  22. K.I. Bolotin, F. Ghahari, M.D. Shulman, H.L. Stormer, P. Kim, Observation of the fractional quantum Hall effect in graphene. Nature 462, 196 (2009)

    ADS  Google Scholar 

  23. F. Bruckmann, G. Endrodi, Dressed Wilson loops as dual condensates in response to magnetic and electric fields. Phys. Rev. D 84, 074506 (2011)

    ADS  Google Scholar 

  24. P. Buividovich, M. Chernodub, D. Kharzeev, T. Kalaydzhyan, E. Luschevskaya et al., Magnetic-field-induced insulator-conductor transition in SU(2) quenched lattice gauge theory. Phys. Rev. Lett. 105, 132001 (2010)

    ADS  Google Scholar 

  25. P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov, Lattice QCD in strong magnetic fields (2009). arXiv:0909.1808

  26. G. Calucci, R. Ragazzon, Nonlogarithmic terms in the strong field dependence of the photon propagator. J. Phys. A 27, 2161 (1994)

    ADS  Google Scholar 

  27. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  28. P. Cea, L. Cosmai, P. Giudice, A. Papa, Lattice Planar QED in external magnetic field. PoS LATTICE2011, 307 (2011)

    Google Scholar 

  29. B. Chatterjee, H. Mishra, A. Mishra, Chiral symmetry breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background. Nucl. Phys. A 862–863, 312 (2011)

    Google Scholar 

  30. B. Cheng, A.V. Olinto, Primordial magnetic fields generated in the quark–hadron transition. Phys. Rev. D 50, 2421 (1994)

    ADS  Google Scholar 

  31. M. Chernodub, Superconductivity of QCD vacuum in strong magnetic field. Phys. Rev. D 82, 085011 (2010)

    ADS  Google Scholar 

  32. T.D. Cohen, D.A. McGady, E.S. Werbos, The chiral condensate in a constant electromagnetic field. Phys. Rev. C 76, 055201 (2007)

    ADS  Google Scholar 

  33. T.D. Cohen, E.S. Werbos, Magnetization of the QCD vacuum at large fields. Phys. Rev. C 80, 015203 (2009)

    ADS  Google Scholar 

  34. M. D’Elia, S. Mukherjee, F. Sanfilippo, QCD phase transition in a strong magnetic background. Phys. Rev. D 82, 051501 (2010)

    ADS  Google Scholar 

  35. M. D’Elia, F. Negro, Chiral properties of strong interactions in a magnetic background. Phys. Rev. D 83, 114028 (2011)

    ADS  Google Scholar 

  36. W. Dittrich, M. Reuter, in Effective Lagrangians in Quantum Electrodynamics. Lecture Notes in Physics, vol. 220 (Springer, Berlin, 1985)

    Google Scholar 

  37. X. Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192 (2009)

    ADS  Google Scholar 

  38. R.C. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars—implications for gamma-ray bursts. Astrophys. J. 392, L9 (1992)

    ADS  Google Scholar 

  39. D. Ebert, K. Klimenko, H. Toki, V. Zhukovsky, Chromomagnetic catalysis of color superconductivity and dimensional reduction. Prog. Theor. Phys. 106, 835 (2001)

    ADS  MATH  Google Scholar 

  40. D. Ebert, K. Klimenko, M. Vdovichenko, A. Vshivtsev, Magnetic oscillations in dense cold quark matter with four fermion interactions. Phys. Rev. D 61, 025005 (2000)

    ADS  Google Scholar 

  41. D. Ebert, V.C. Zhukovsky, Chiral phase transitions in strong chromomagnetic fields at finite temperature and dimensional reduction. Mod. Phys. Lett. A 12, 2567 (1997)

    ADS  MATH  Google Scholar 

  42. V. Elias, D. McKeon, V. Miransky, I. Shovkovy, The Gross-Neveu model and the supersymmetric and nonsupersymmetric Nambu-Jona-Lasinio model in a magnetic field. Phys. Rev. D 54, 7884 (1996)

    ADS  Google Scholar 

  43. E. Elizalde, E. Ferrer, V. de la Incera, Beyond constant mass approximation magnetic catalysis in the gauge Higgs-Yukawa model. Phys. Rev. D 68, 096004 (2003)

    ADS  Google Scholar 

  44. K. Enqvist, P. Olesen, On primordial magnetic fields of electroweak origin. Phys. Lett. B 319, 178 (1993)

    ADS  Google Scholar 

  45. J. Erdmenger, V.G. Filev, D. Zoakos, Magnetic catalysis with massive dynamical flavours. J. High Energy Phys. 1208, 004 (2012). arXiv:1112.4807

    ADS  Google Scholar 

  46. N. Evans, A. Gebauer, K.Y. Kim, M. Magou, Holographic description of the phase diagram of a chiral symmetry breaking gauge theory. J. High Energy Phys. 1003, 132 (2010)

    ADS  Google Scholar 

  47. N. Evans, A. Gebauer, K.Y. Kim, M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition. Phys. Lett. B 698, 91 (2011)

    ADS  Google Scholar 

  48. N. Evans, A. Gebauer, K.Y. Kim, E, B, μ, T phase structure of the D3/D7 holographic dual. J. High Energy Phys. 1105, 067 (2011)

    ADS  Google Scholar 

  49. N. Evans, T. Kalaydzhyan, K.Y. Kim, I. Kirsch, Non-equilibrium physics at a holographic chiral phase transition. J. High Energy Phys. 1101, 050 (2011)

    ADS  Google Scholar 

  50. N. Evans, K.Y. Kim, J.P. Shock, Chiral phase transitions and quantum critical points of the D3/D7(D5) system with mutually perpendicular E and B fields at finite temperature and density. J. High Energy Phys. 1109, 021 (2011)

    ADS  Google Scholar 

  51. K. Farakos, G. Koutsoumbas, N. Mavromatos, Dynamical flavor symmetry breaking by a magnetic field in lattice QED in three-dimensions. Phys. Lett. B 431, 147 (1998)

    ADS  Google Scholar 

  52. K. Farakos, G. Koutsoumbas, N. Mavromatos, A. Momen, Catalysis of chiral symmetry breaking by external magnetic fields in three-dimensional lattice QED (1998). hep-lat/9902017

  53. K. Farakos, G. Koutsoumbas, N. Mavromatos, A. Momen, On magnetic catalysis in even flavor QED(3). Phys. Rev. D 61, 045005 (2000)

    ADS  Google Scholar 

  54. S. Fayazbakhsh, N. Sadooghi, Color neutral 2SC phase of cold and dense quark matter in the presence of constant magnetic fields. Phys. Rev. D 82, 045010 (2010)

    ADS  Google Scholar 

  55. S. Fayazbakhsh, N. Sadooghi, Phase diagram of hot magnetized two-flavor color superconducting quark matter. Phys. Rev. D 83, 025026 (2011)

    ADS  Google Scholar 

  56. G.N. Ferrari, A.F. Garcia, M.B. Pinto, Chiral transition within effective quark models under magnetic fields. Phys. Rev. D 86, 096005 (2012)

    ADS  Google Scholar 

  57. E. Ferrer, V. Gusynin, V. de la Incera, Magnetic field induced gap and kink behavior of thermal conductivity in cuprates. Mod. Phys. Lett. B 16, 107 (2002)

    ADS  Google Scholar 

  58. E. Ferrer, V. Gusynin, V. de la Incera, Thermal conductivity in 3-D NJL model under external magnetic field. Eur. Phys. J. B 33, 397 (2003)

    ADS  Google Scholar 

  59. E.J. Ferrer, V. de la Incera, Yukawa interactions and dynamical generation of mass in an external magnetic field. AIP Conf. Proc. 444, 452 (1998)

    ADS  Google Scholar 

  60. E.J. Ferrer, V. de la Incera, Yukawa coupling contribution to magnetic field induced dynamical mass. Int. J. Mod. Phys. 14, 3963 (1999)

    ADS  Google Scholar 

  61. E. Ferrer, V. de la Incera, Magnetic catalysis in the presence of scalar fields. Phys. Lett. B 481, 287 (2000)

    ADS  Google Scholar 

  62. E.J. Ferrer, V. de la Incera, C. Manuel, Color-superconducting gap in the presence of a magnetic field. Nucl. Phys. B 747, 88 (2006)

    ADS  Google Scholar 

  63. E.J. Ferrer, V. de la Incera, C. Manuel, Colour superconductivity in a strong magnetic field. J. Phys. A 39, 6349 (2006)

    MathSciNet  ADS  Google Scholar 

  64. V.G. Filev, C.V. Johnson, J.P. Shock, Universal holographic chiral dynamics in an external magnetic field. J. High Energy Phys. 0908, 013 (2009)

    ADS  Google Scholar 

  65. V.G. Filev, R.C. Raskov, Magnetic catalysis of chiral symmetry breaking. A holographic prospective. Adv. High Energy Phys. 2010, 473206 (2010)

    Google Scholar 

  66. V.G. Filev, D. Zoakos, Towards unquenched holographic magnetic catalysis. J. High Energy Phys. 1108, 022 (2011)

    ADS  Google Scholar 

  67. E.S. Fraga, A.J. Mizher, Chiral transition in a strong magnetic background. Phys. Rev. D 78, 025016 (2008)

    ADS  Google Scholar 

  68. E.S. Fraga, A.J. Mizher, Can a strong magnetic background modify the nature of the chiral transition in QCD? Nucl. Phys. A 820, 103C (2009)

    ADS  Google Scholar 

  69. E.S. Fraga, A.J. Mizher, Chiral symmetry restoration and strong CP violation in a strong magnetic background. PoS CPOD2009, 037 (2009)

    Google Scholar 

  70. E.S. Fraga, L.F. Palhares, Deconfinement in the presence of a strong magnetic background: an exercise within the MIT bag model. Phys. Rev. D 86, 016008 (2012)

    ADS  Google Scholar 

  71. E.S. Fraga, A.J. Mizher, M. Chernodub, Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD. PoS ICHEP2010, 340 (2010)

    Google Scholar 

  72. M. Frasca, M. Ruggieri, Magnetic susceptibility of the quark condensate and polarization from chiral models. Phys. Rev. D 83, 094024 (2011)

    ADS  Google Scholar 

  73. Y. Frishman, Particles, Quantum Fields and Statistical Particles, Quantum Fields and Statistical Mechanics. Lecture Notes in Physics, vol. 32 (Springer, Berlin, 1975)

    Google Scholar 

  74. K. Fukushima, J.M. Pawlowski, Magnetic catalysis in hot and dense quark matter and quantum fluctuations. Phys. Rev. D 86, 076013 (2012). arXiv:1203.4330

    ADS  Google Scholar 

  75. K. Fukushima, H.J. Warringa, Color superconducting matter in a magnetic field. Phys. Rev. Lett. 100, 032007 (2008)

    ADS  Google Scholar 

  76. B.V. Galilo, S.N. Nedelko, Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations. Phys. Rev. D 84, 094017 (2011)

    ADS  Google Scholar 

  77. R. Gatto, M. Ruggieri, Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field. Phys. Rev. D 82, 054027 (2010)

    ADS  Google Scholar 

  78. R. Gatto, M. Ruggieri, Deconfinement and chiral symmetry restoration in a strong magnetic background. Phys. Rev. D 83, 034016 (2011)

    ADS  Google Scholar 

  79. B. Geyer, L. Granda, S. Odintsov, Nambu-Jona-Lasinio model in curved space-time with magnetic field. Mod. Phys. Lett. A 11, 2053 (1996)

    ADS  Google Scholar 

  80. S. Ghosh, S. Mandal, S. Chakrabarty, Chiral properties of QCD vacuum in magnetars—a Nambu-Jona-Lasinio model with semi-classical approximation. Phys. Rev. C 75, 015805 (2007)

    ADS  Google Scholar 

  81. D. Gitman, S. Odintsov, Y. Shilnov, Chiral symmetry breaking in d = 3 NJL model in external gravitational and magnetic fields. Phys. Rev. D 54, 2968 (1996)

    ADS  Google Scholar 

  82. J. Goldstone, Field theories with superconductor solutions. Nuovo Cimento 19, 154 (1961)

    MathSciNet  MATH  Google Scholar 

  83. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965 (1962)

    MathSciNet  ADS  MATH  Google Scholar 

  84. E. Gorbar, On chiral symmetry breaking in a constant magnetic field in higher dimension. Phys. Lett. B 491, 305 (2000)

    ADS  Google Scholar 

  85. E. Gorbar, On color superconductivity in external magnetic field. Phys. Rev. D 62, 014007 (2000)

    ADS  Google Scholar 

  86. E. Gorbar, V. Gusynin, J. Jia, V. Miransky, Broken-symmetry states and phase diagram of the lowest Landau level in bilayer graphene. Phys. Rev. B 84, 235449 (2011)

    ADS  Google Scholar 

  87. E. Gorbar, V. Gusynin, V. Miransky, Toward theory of quantum Hall effect in graphene. J. Low Temp. Phys. 34, 790 (2008)

    Google Scholar 

  88. E.V. Gorbar, V.P. Gusynin, V.A. Miransky, Dynamics and phase diagram of the ν=0 quantum Hall state in bilayer graphene. Phys. Rev. B 81, 155451 (2010)

    ADS  Google Scholar 

  89. E.V. Gorbar, V.P. Gusynin, V.A. Miransky, Energy gaps at neutrality point in bilayer graphene in a magnetic field. JETP Lett. 91, 314 (2010)

    ADS  Google Scholar 

  90. E. Gorbar, V. Gusynin, V. Miransky, I. Shovkovy, Magnetic field driven metal insulator phase transition in planar systems. Phys. Rev. B 66, 045108 (2002)

    ADS  Google Scholar 

  91. E. Gorbar, V. Gusynin, V. Miransky, I. Shovkovy, Dynamics in the quantum Hall effect and the phase diagram of graphene. Phys. Rev. B 78, 085437 (2008)

    ADS  Google Scholar 

  92. E. Gorbar, V. Gusynin, V. Miransky, I. Shovkovy, Broken-symmetry ν=0 quantum Hall states in bilayer graphene: Landau level mixing and dynamical screening. Phys. Rev. B 85, 235460 (2012)

    ADS  Google Scholar 

  93. E. Gorbar, V. Gusynin, V. Miransky, I. Shovkovy, Coulomb interaction and magnetic catalysis in the quantum Hall effect in graphene. Phys. Scr. T 146, 014018 (2012)

    ADS  Google Scholar 

  94. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, Orlando, 1980)

    MATH  Google Scholar 

  95. D. Grasso, H.R. Rubinstein, Magnetic fields in the early universe. Phys. Rept. 348, 163 (2001)

    ADS  Google Scholar 

  96. V. Gusynin, Magnetic catalysis of chiral symmetry breaking in gauge theories. Ukr. J. Phys. 45, 603 (2000)

    Google Scholar 

  97. V. Gusynin, D. Hong, I. Shovkovy, Chiral symmetry breaking by a nonAbelian external field in (2+1)-dimensions. Phys. Rev. D 57, 5230 (1998)

    MathSciNet  ADS  Google Scholar 

  98. V. Gusynin, V. Miransky, S. Sharapov, I. Shovkovy, Excitonic gap, phase transition, and quantum Hall effect in graphene. Phys. Rev. B 74, 195429 (2006)

    ADS  Google Scholar 

  99. V. Gusynin, V. Miransky, I. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions. Phys. Rev. Lett. 73, 3499 (1994)

    ADS  Google Scholar 

  100. V. Gusynin, V. Miransky, I. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)-dimensions. Phys. Lett. B 349, 477 (1995)

    ADS  Google Scholar 

  101. V. Gusynin, V. Miransky, I. Shovkovy, Dynamical chiral symmetry breaking by a magnetic field in QED. Phys. Rev. D 52, 4747 (1995)

    ADS  Google Scholar 

  102. V. Gusynin, V. Miransky, I. Shovkovy, Dynamical flavor symmetry breaking by a magnetic field in (2+1)-dimensions. Phys. Rev. D 52, 4718 (1995)

    ADS  Google Scholar 

  103. V. Gusynin, V. Miransky, I. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462, 249 (1996)

    ADS  Google Scholar 

  104. V. Gusynin, V. Miransky, I. Shovkovy, Dynamical chiral symmetry breaking in QED in a magnetic field: toward exact results. Phys. Rev. Lett. 83, 1291 (1999)

    ADS  Google Scholar 

  105. V. Gusynin, V. Miransky, I. Shovkovy, Theory of the magnetic catalysis of chiral symmetry breaking in QED. Nucl. Phys. B 563, 361 (1999)

    ADS  Google Scholar 

  106. V. Gusynin, V. Miransky, I. Shovkovy, Physical gauge in the problem of dynamical chiral symmetry breaking in QED in a magnetic field. Found. Phys. 30, 349 (2000)

    Google Scholar 

  107. V. Gusynin, V. Miransky, I. Shovkovy, Large N dynamics in QED in a magnetic field. Phys. Rev. D 67, 107703 (2003)

    ADS  Google Scholar 

  108. V. Gusynin, S. Sharapov, Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005)

    ADS  Google Scholar 

  109. V. Gusynin, S. Sharapov, J. Carbotte, AC conductivity of graphene: from tight-binding model to 2+1-dimensional quantum electrodynamics. Int. J. Mod. Phys. B 21, 4611 (2007)

    ADS  Google Scholar 

  110. V. Gusynin, I. Shovkovy, Chiral symmetry breaking in QED in a magnetic field at finite temperature. Phys. Rev. D 56, 5251 (1997)

    ADS  Google Scholar 

  111. V. Gusynin, A.V. Smilga, Electron selfenergy in strong magnetic field: summation of double logarithmic terms. Phys. Lett. B 450, 267 (1999)

    ADS  Google Scholar 

  112. F. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015 (1988)

    MathSciNet  ADS  Google Scholar 

  113. I.F. Herbut, B. Roy, Quantum critical scaling in magnetic field near the Dirac point in graphene. Phys. Rev. B 77, 245438 (2008)

    ADS  Google Scholar 

  114. B. Hiller, A.A. Osipov, A.H. Blin, J. da Providencia, Effects of quark interactions on dynamical chiral symmetry breaking by a magnetic field. SIGMA 4, 024 (2008)

    Google Scholar 

  115. J. Hubbard, Calculation of partition functions. Phys. Rev. Lett. 3, 77 (1959)

    ADS  Google Scholar 

  116. T. Inagaki, D. Kimura, T. Murata, Four fermion interaction model in a constant magnetic field at finite temperature and chemical potential. Prog. Theor. Phys. 111, 371 (2004)

    ADS  MATH  Google Scholar 

  117. T. Inagaki, D. Kimura, T. Murata, NJL model at finite chemical potential in a constant magnetic field. Prog. Theor. Phys. Suppl. 153, 321 (2004)

    ADS  Google Scholar 

  118. T. Inagaki, S. Odintsov, Y. Shil’nov, Dynamical symmetry breaking in the external gravitational and constant magnetic fields. Int. J. Mod. Phys. A 14, 481 (1999)

    MathSciNet  ADS  MATH  Google Scholar 

  119. M. Ishi-i, T. Kashiwa, N. Tanimura, Effect of dynamical SU(2) gluons to the gap equation of Nambu-Jona-Lasinio model in constant background magnetic field. Phys. Rev. D 65, 065025 (2002)

    ADS  Google Scholar 

  120. Z. Jiang, Y. Zhang, H.L. Stormer, P. Kim, Quantum Hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 99, 106802 (2007)

    ADS  Google Scholar 

  121. D.N. Kabat, K.M. Lee, E.J. Weinberg, QCD vacuum structure in strong magnetic fields. Phys. Rev. D 66, 014004 (2002)

    ADS  Google Scholar 

  122. S. Kawati, G. Konisi, H. Miyata, Symmetry behavior in an external field. Phys. Rev. D 28, 1537 (1983)

    ADS  Google Scholar 

  123. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP violation’. Nucl. Phys. A 803, 227 (2008)

    ADS  Google Scholar 

  124. D. Khveshchenko, Ghost excitonic insulator transition in layered graphite. Phys. Rev. Lett. 87, 246802 (2001)

    ADS  Google Scholar 

  125. D. Khveshchenko, Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite. Phys. Rev. Lett. 87, 206401 (2001)

    ADS  Google Scholar 

  126. M. Klaus, On the bound state of Schrodinger operators in one-dimension. Ann. Phys. 108, 288 (1977)

    MathSciNet  ADS  MATH  Google Scholar 

  127. S. Klevansky, The Nambu-Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 64, 649 (1992)

    MathSciNet  ADS  Google Scholar 

  128. S. Klevansky, R.H. Lemmer, Chiral symmetry restoration in the Nambu-Jona-Lasinio model with a constant electromagnetic field. Phys. Rev. D 39, 3478 (1989)

    ADS  Google Scholar 

  129. K. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field. Z. Phys. C 54, 323 (1992)

    MathSciNet  ADS  Google Scholar 

  130. K. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field. Theor. Math. Phys. 89, 1161 (1992)

    MathSciNet  Google Scholar 

  131. K.G. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field. Theor. Math. Phys. 90, 1 (1992)

    MathSciNet  Google Scholar 

  132. K. Klimenko, Magnetic catalysis and oscillating effects in Nambu-Jona-Lasinio model at nonzero chemical potential (1998). hep-ph/9809218

  133. K. Klimenko, B. Magnitsky, A. Vshivtsev, Three-dimensional \((\psi \overline{\psi})^{2}\) model with an external nonAbelian field, temperature and chemical potential. Nuovo Cimento A 107, 439 (1994)

    ADS  Google Scholar 

  134. K. Klimenko, V. Zhukovsky, Does there arise a significant enhancement of the dynamical quark mass in a strong magnetic field? Phys. Lett. B 665, 352 (2008)

    ADS  Google Scholar 

  135. I. Krive, S. Naftulin, Dynamical symmetry breaking and phase transitions in a three-dimensional Gross-Neveu model in a strong magnetic field. Phys. Rev. D 46, 2737 (1992)

    ADS  Google Scholar 

  136. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 2nd edn. (Pergamon, London, 1965)

    MATH  Google Scholar 

  137. D. Lee, P. McGraw, Y. Ng, I. Shovkovy, The effective potential of composite fields in weakly coupled QED in a uniform external magnetic field. Phys. Rev. D 59, 085008 (1999)

    ADS  Google Scholar 

  138. C.N. Leung, Y. Ng, A. Ackley, Chiral symmetry breaking by a magnetic field in weak coupling QED (1995). hep-th/9512114

  139. W.V. Liu, Parity breaking and phase transition induced by a magnetic field in high T(c) superconductors. Nucl. Phys. B 556, 563 (1999)

    ADS  Google Scholar 

  140. Y.M. Loskutov, V.V. Skobelev, Nonlinear electrodynamics in a superstrong magnetic field. Phys. Lett. A 56, 151 (1976)

    ADS  Google Scholar 

  141. C. Manuel, Color superconductivity in a strong external magnetic field. Nucl. Phys. A 785, 114 (2007)

    ADS  Google Scholar 

  142. D.P. Menezes, M. Benghi Pinto, S.S. Avancini, A. Perez Martinez, C. Providencia, Quark matter under strong magnetic fields in the Nambu-Jona-Lasinio model. Phys. Rev. C 79, 035807 (2009)

    ADS  Google Scholar 

  143. D.P. Menezes, M. Benghi Pinto, S.S. Avancini, C. Providencia, Quark matter under strong magnetic fields in the su(3) Nambu-Jona-Lasinio model. Phys. Rev. C 80, 065805 (2009)

    ADS  Google Scholar 

  144. V. Miransky, Dynamical Symmetry Breaking in Quantum Field Theories (World Scientific, Singapore, 1994)

    Google Scholar 

  145. V. Miransky, Catalysis of dynamical symmetry breaking by a magnetic field. Prog. Theor. Phys. Suppl. 123, 49 (1996)

    ADS  Google Scholar 

  146. V. Miransky, I. Shovkovy, Magnetic catalysis and anisotropic confinement in QCD. Phys. Rev. D 66, 045006 (2002)

    ADS  Google Scholar 

  147. A.J. Mizher, M. Chernodub, E.S. Fraga, Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions. Phys. Rev. D 82, 105016 (2010)

    ADS  Google Scholar 

  148. A.J. Mizher, E.S. Fraga, CP violation and chiral symmetry restoration in the hot linear sigma model in a strong magnetic background. Nucl. Phys. A 831, 91 (2009)

    ADS  Google Scholar 

  149. A.J. Mizher, E.S. Fraga, M. Chernodub, Phase diagram of strong interactions in an external magnetic field. PoS FACESQCD, 020 (2010)

    Google Scholar 

  150. Y. Nambu, Axial vector current conservation in weak interactions. Phys. Rev. Lett. 4, 380 (1960)

    ADS  Google Scholar 

  151. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345 (1961)

    ADS  Google Scholar 

  152. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II. Phys. Rev. 124, 246 (1961)

    ADS  Google Scholar 

  153. A. Niemi, G. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times. Phys. Rev. Lett. 51, 2077 (1983)

    MathSciNet  ADS  Google Scholar 

  154. J.L. Noronha, I.A. Shovkovy, Color-flavor locked superconductor in a magnetic field. Phys. Rev. D 76, 105030 (2007)

    ADS  Google Scholar 

  155. K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    ADS  Google Scholar 

  156. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    ADS  Google Scholar 

  157. A. Osipov, B. Hiller, A. Blin, J. da Providencia, Dynamical chiral symmetry breaking by a magnetic field and multi-quark interactions. Phys. Lett. B 650, 262 (2007)

    ADS  Google Scholar 

  158. R.R. Parwani, On chiral symmetry breaking by external magnetic fields in QED in three-dimensions. Phys. Lett. B 358, 101 (1995)

    ADS  Google Scholar 

  159. R.R. Parwani, Spin polarization by external magnetic fields, Aharonov-Bohm flux strings, and chiral symmetry breaking in QED in three-dimensions. Int. J. Mod. Phys. A 11, 1715 (1996)

    ADS  Google Scholar 

  160. R. Peierls, Über die existenz stationärer zustände. Z. Phys. 58, 59 (1929)

    ADS  MATH  Google Scholar 

  161. N. Peres, F. Guinea, A. Castro Neto, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)

    ADS  Google Scholar 

  162. F. Preis, A. Rebhan, A. Schmitt, Inverse magnetic catalysis in dense holographic matter. J. High Energy Phys. 1103, 033 (2011)

    ADS  Google Scholar 

  163. F. Preis, A. Rebhan, A. Schmitt, Holographic baryonic matter in a background magnetic field. J. Phys. G 39, 054006 (2012)

    ADS  Google Scholar 

  164. A. Redlich, Gauge noninvariance and parity violation of three-dimensional fermions. Phys. Rev. Lett. 52, 18 (1984)

    MathSciNet  ADS  Google Scholar 

  165. N. Sadooghi, A. Sodeiri Jalili, New look at the modified Coulomb potential in a strong magnetic field. Phys. Rev. D 76, 065013 (2007)

    ADS  Google Scholar 

  166. D.D. Scherer, H. Gies, Renormalization group study of magnetic catalysis in the 3d Gross-Neveu model. Phys. Rev. B 85, 195417 (2012). arXiv:1201.3746

    ADS  Google Scholar 

  167. S. Schramm, B. Muller, A.J. Schramm, Quark–anti-quark condensates in strong magnetic fields. Mod. Phys. Lett. A 7, 973 (1992)

    ADS  Google Scholar 

  168. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    MathSciNet  ADS  MATH  Google Scholar 

  169. J.S. Schwinger, Gauge invariance and mass. 2. Phys. Rev. 128, 2425 (1962)

    MathSciNet  ADS  MATH  Google Scholar 

  170. G.W. Semenoff, Condensed matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449 (1984)

    MathSciNet  ADS  Google Scholar 

  171. G.W. Semenoff, Electronic zero modes of vortices in Hall states of gapped graphene. Phys. Rev. B 83, 115450 (2011). arXiv:1005.0572

    ADS  Google Scholar 

  172. G. Semenoff, I. Shovkovy, L. Wijewardhana, Phase transition induced by a magnetic field. Mod. Phys. Lett. A 13, 1143 (1998)

    ADS  Google Scholar 

  173. G. Semenoff, I. Shovkovy, L. Wijewardhana, Universality and the magnetic catalysis of chiral symmetry breaking. Phys. Rev. D 60, 105024 (1999)

    ADS  Google Scholar 

  174. G.W. Semenoff, F. Zhou, Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene. J. High Energy Phys. 1107, 037 (2011)

    ADS  Google Scholar 

  175. I. Shovkovy, V. Turkowski, Dimensional reduction in Nambu-Jona-Lasinio model in external chromomagnetic field. Phys. Lett. B 367, 213 (1996)

    ADS  Google Scholar 

  176. I. Shushpanov, A.V. Smilga, Quark condensate in a magnetic field. Phys. Lett. B 402, 351 (1997)

    ADS  Google Scholar 

  177. B. Simon, On the Number of Bound States of Two-Body Schrodinger Operators—A Review (Princeton University Press, Princeton, 1976)

    Google Scholar 

  178. B. Simon, The bound state of weakly coupled Schrodinger operators in one and two-dimensions. Ann. Phys. 97, 279 (1976)

    ADS  MATH  Google Scholar 

  179. V. Skokov, A.Y. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 24, 5925 (2009)

    ADS  Google Scholar 

  180. R.L. Stratonovich, On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416 (1957)

    ADS  MATH  Google Scholar 

  181. H. Suganuma, T. Tatsumi, On the behavior of symmetry and phase transitions in a strong electromagnetic field. Ann. Phys. 208, 470 (1991)

    ADS  Google Scholar 

  182. C. Thompson, R.C. Duncan, Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 408, 194 (1993)

    ADS  Google Scholar 

  183. T. Vachaspati, Magnetic fields from cosmological phase transitions. Phys. Lett. B 265, 258 (1991)

    ADS  Google Scholar 

  184. M. Vdovichenko, A. Vshivtsev, K. Klimenko, Magnetic catalysis and magnetic oscillations in the Nambu-Jona-Lasinio model. Phys. At. Nucl. 63, 470 (2000)

    Google Scholar 

  185. A. Vshivtsev, K. Klimenko, B. Magnitsky, Three-dimensional Gross-Neveu model in the external chromomagnetic fields at finite temperature. Theor. Math. Phys. 101, 1436 (1994)

    Google Scholar 

  186. L. Yu, I.A. Shovkovy, Directional dependence of color superconducting gap in two-flavor QCD in a magnetic field. Phys. Rev. D 85, 085022 (2012)

    ADS  Google Scholar 

  187. A. Zayakin, QCD vacuum properties in a magnetic field from AdS/CFT: chiral condensate and Goldstone mass. J. High Energy Phys. 0807, 116 (2008)

    MathSciNet  ADS  Google Scholar 

  188. Y. Zhang, Z. Jiang, J.P. Small, M.S. Purewal, Y.W. Tan et al., Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006)

    ADS  Google Scholar 

  189. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)

    ADS  Google Scholar 

  190. Y. Zheng, T. Ando, Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 65, 245420 (2002)

    ADS  Google Scholar 

  191. V. Zhukovsky, V. Khudyakov, K. Klimenko, D. Ebert, Chromomagnetic catalysis of color superconductivity. JETP Lett. 74, 523 (2001)

    ADS  Google Scholar 

  192. V. Zhukovsky, K. Klimenko, Magnetic catalysis of the P-parity-breaking phase transition of the first order and high-temperature superconductivity. Theor. Math. Phys. 134, 254 (2003)

    MATH  Google Scholar 

  193. V.C. Zhukovsky, K. Klimenko, V. Khudyakov, Magnetic catalysis in a P-even, chiral invariant three-dimensional model with four-fermion interaction. Theor. Math. Phys. 124, 1132 (2000)

    Google Scholar 

  194. V.C. Zhukovsky, K. Klimenko, V. Khudyakov, D. Ebert, Magnetic catalysis of parity breaking in a massive Gross-Neveu model and high temperature superconductivity. JETP Lett. 73, 121 (2001)

    ADS  Google Scholar 

Download references

Acknowledgements

The author thanks E.V. Gorbar, V.P. Gusynin and V.A. Miransky for reading the early version of the review and offering many useful comments. This work was supported in part by the U.S. National Science Foundation under Grant No. PHY-0969844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Shovkovy .

Editor information

Editors and Affiliations

Appendix: Fermion Propagator in a Magnetic Field

Appendix: Fermion Propagator in a Magnetic Field

Let us start from the discussion of the Dirac fermion propagator in a magnetic field in 3+1 dimensions. It is formally defined by the following expression:

$$ S\bigl(x,x^\prime\bigr) = i \bigl[ i \gamma^0 \partial_t - (\boldsymbol{\pi}_{\perp}\cdot\boldsymbol{\gamma }_{\perp})-\pi^{3}\gamma^3-m \bigr]^{-1} \delta^{4}\bigl(x-x^\prime\bigr), $$
(2.80)

where x≡(x 0,x 1,x 2,x 3)=(t,r). By definition, the spatial components of the canonical momenta are π i≡−i∂ i eA i, where i=1,2,3. (The perpendicular components are i=1,2.) Here we assume that e is the fermion electric charge (i.e., one should take e<0 in the case of the electron) and use the Landau gauge A=(0,Bx 1,0), where B is the magnetic field pointing in the x 3-direction. By definition, the components of the usual three-dimensional vectors A (vector potential) and r (position vector) are identified with the contravariant components A i and x i, respectively.

In the Landau gauge used, it is convenient to perform a Fourier transform in the time (tt′) and the longitudinal (x 3x ′ 3) coordinates. Then, we obtain

(2.81)

where r is the position vector in the plane perpendicular to the magnetic field.

In order to obtain a Landau level representation for the propagator (2.81), it is convenient to utilize the complete set of eigenstates of the operator \(\boldsymbol{\pi}_{\perp}^{2}\). This operator has the eigenvalues (2k+1)|eB|, where k=0,1,2,… is the quantum number associated with the orbital motion in the perpendicular plane. The corresponding normalized wave functions read

$$ \psi_{k p_2}(\mathbf{r}_{\perp})=\frac{1}{\sqrt{2\pi\ell}} \frac {1}{\sqrt{2^k k!\sqrt{\pi}}} H_k \biggl(\frac{x^1}{\ell}+p_2\ell \biggr)e^{-\frac{1}{2\ell ^2}(x^1+p_2\ell^2)^2} e^{-i s_{\perp}x^2 p_2}, $$
(2.82)

where H k (z) are the Hermite polynomials [94], \(\ell=1/\sqrt{|e B |}\) is the magnetic length, and s ≡sign(eB). The wave functions satisfy the conditions of normalizability and completeness,

(2.83)
(2.84)

respectively.

By making use of the spectral expansion of the δ-function in (2.84), as well as the following identities:

(2.85)
(2.86)

with being the spin projectors onto the direction of the magnetic field, we can rewrite the propagator in (2.81) as follows:

(2.87)

The Schwinger phase is given by

$$ \varPhi\bigl(\mathbf{r}_{\perp},\mathbf{r}_{\perp}^{\prime} \bigr) = s_{\perp} \frac {(x^1+x^{\prime\, 1})(x^2-x^{\prime\, 2})}{2\ell^2}, $$
(2.88)

and the translationary invariant part of the propagator reads

(2.89)
(2.90)

where we used the short-hand notation

$$ \xi= \frac{(\mathbf{r}_{\perp}-\mathbf{r}_{\perp}^{\prime})^2}{2\ell^2}. $$
(2.91)

In order to integrate over the quantum number p 2 in (2.87), we took into account the following table integral [94]:

$$ \int\limits _{-\infty}^\infty e^{-x^2}H_m(x+y)H_n(x+z)dx =2^n\pi^{1/2}m!z^{n-m}L_m^{n-m}(-2yz), $$
(2.92)

which is valid when mn. Here \(L^{\alpha}_{n}\) are the generalized Laguerre polynomials, and \(L_{n} \equiv L^{0}_{n}\).

Here a short remark is in order regarding the general structure of the Dirac propagator in a magnetic field. It is not a translationally invariant function, but has the form of a product of the Schwinger phase factor \(e^{i\varPhi(\mathbf{r}_{\perp},\mathbf {r}_{\perp}^{\prime})}\) and a translationally invariant part. The Schwinger phase spoils the translational invariance. From a physics viewpoint, this reflects a simple fact that the fermion momenta in the two spatial directions perpendicular to the field are not conserved quantum numbers.

The Fourier transform of the translationary invariant part of the propagator (2.89) reads

$$ \tilde{S}\bigl(\omega,p^3;\mathbf{p}_{\perp}\bigr) = 2 i e^{-p_{\perp}^2 \ell^2 } \sum_{n=0}^{\infty} \frac{(-1)^n D_n(\omega,p^3;\mathbf{p}_{\perp})}{\omega^2-2n|eB| -(p^3)^2-m^2}, $$
(2.93)

where

(2.94)

Taking into account the earlier comment that the perpendicular momenta of charged particles are not conserved quantum numbers, this representation may appear surprising. However, one should keep in mind that the result in (2.93) is not a usual momentum representation of the propagator, but the Fourier transform of its translationary invariant part only.

In some applications, it is convenient to make use of the so-called proper-time representation [168], in which the sum over Landau levels is traded for a proper-time integration. This is easily derived from (2.93) by making the following substitution:

$$ \frac{i}{\omega^2-2n|eB| -(p^3)^2-m^2+i 0} = \int_{0}^{\infty} ds e^{i s [\omega^2-2n|eB| -(p^3)^2-m^2+i 0 ]}. $$
(2.95)

Then, the sum over Landau levels can be easily performed with the help of the summation formula for Laguerre polynomials [94],

$$ \sum_{n=0}^{\infty}L^{\alpha}_n(x)z^n= (1-z)^{-(\alpha+1)}\exp \biggl(\frac{xz}{z-1} \biggr). $$
(2.96)

The final expression for the propagator in the proper-time representation reads

(2.97)

where (γp)≡(γ p )+γ 3 p 3.

Using the same method, one can also derive the Dirac fermion propagator in a magnetic field in 2+1 dimensions. It has the same structure as the propagator in Eqs. (2.87), (2.88), (2.89), and (2.90), but with p 3=0, i.e.,

(2.98)

where

(2.99)

The Fourier transform of the translationally invariant part is

(2.100)

Finally, the proper-time representation reads

(2.101)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shovkovy, I.A. (2013). Magnetic Catalysis: A Review. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_2

Download citation

Publish with us

Policies and ethics