Skip to main content

Kinematics 1: Motion with Respect to an Observer

  • Chapter
  • First Online:
Special Relativity in General Frames

Part of the book series: Graduate Texts in Physics ((GTP))

  • 4205 Accesses

Abstract

This chapter is devoted to the motion of a particle as perceived by a given observer. The focus is first set on a massive particle. The Lorentz factor is introduced as the ratio of the observer’s proper time to the particle’s one. Then the concepts of velocity and acceleration relative to an observer are discussed and expressed in terms of the 4-velocity and 4-acceleration of the particle and the 4-velocity, 4-acceleration and 4-rotation of the observer. All the chapter is illustrated with three simple uniform motions: the linear, accelerated and circular ones. The last part deals with massless particles (photons) and addresses the propagation of light with respect to a given observer. The invariance of the (locally measured) velocity of light is established, and experimental tests of it are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hendrik A. Lorentz (1853–1928): Dutch theoretical physicist, author of many works on electromagnetism, the electron theory and relativity; he received the 1902 Nobel Prize in Physics for the explanation of the Zeeman effect (cf. p. 146).

  2. 2.

    Incidentally, the muon has been discovered in this manner in 1937; cf. the historical note below.

  3. 3.

    Bruno Rossi (1905–1993): Italian physicist, who moved to United States in 1939 to escape from the fascist regime. Specialist of cosmic rays, he was also a pioneer of X-ray astronomy in the 1960s. The Rossi X-ray Timing Explorer (RXTE) satellite (1995–2012) was named after him.

  4. 4.

    Actually, the muon selection has been performed from their penetration depth in iron plates, which provides their energy E and, in a second stage, their velocity, by assuming the relation \(E = m{c}^{2}/\sqrt{1 - {V }^{2 } /{c}^{2}}\); cf. Eq. (9.16).

  5. 5.

    Carl D. Anderson (1905–1991): American physicist working at Caltech, who discovered two elementary particles: the positron (the electron antiparticle) in 1932 (Anderson 19321933) , for which he received the Nobel Prize in Physics in 1936, and the muon in 1937.

  6. 6.

    Hideki Yukawa (1907–1981): Japanese theoretical physicist, pioneer of particle physics; he was awarded the Nobel Prize in Physics in 1949 (the first Japanese one!) for his prediction of the meson.

  7. 7.

    The satellite BeppoSAX (1996–2003), dedicated to X-ray astronomy, has been named to honour him,Beppo being the nickname of Giuseppe.

  8. 8.

    Jean-Dominique Cassini (1625–1712): Italian–French astronomer, first director of the newly built Paris Observatory in 1671, under the reign of Louis XIV. Apart from the study of Io’s eclipses, he discovered four Saturn’s moons and the famous “Cassini division” in Saturn’s rings. He also supervised the first measure of the size of the Solar System by means of the parallax of Mars.

  9. 9.

    Ole C. Rømer (1644–1710): Danish astronomer who worked at Paris Observatory from 1672 to 1679, at the invitation of Jean Picard (cf. p. 157) and under the supervision of Cassini.

  10. 10.

    James Bradley (1693–1762): British astronomer, famous for this explanation of stellar aberration (Sect.  5.6.3 ) and the discovery of Earth nutation.

  11. 11.

    Hippolyte Fizeau (1819–1896): French physicist who authored many studies on light; in addition to the measurement of c, he notably discovered the Doppler effect on light waves (Sect.  5.5 ).

  12. 12.

    Léon Foucault (1819–1868): French physicist and astronomer, famous for this works in optics (measure of c, Foucault test for telescope mirrors), electromagnetism (Foucault currents) and mechanics (Foucault pendulum).

  13. 13.

    François Arago (1786–1853): French astronomer, well known for his works in optics. He was director of Paris Observatory and minister of the French Second Republic, where he acted for the abolition of slavery in French colonies (1848).

  14. 14.

    Arago’s results have been presented to the French Academy of Sciences in 1810, but the corresponding article has been published only in 1853 because the original manuscript had been lost.

  15. 15.

    Augustin Fresnel (1788–1827): French physicist, cofounder of the wave theory of light; he invented the lens bearing his name and that equips lighthouses.

  16. 16.

    Albert A. Michelson (1852–1931): American physicist who devoted his life to precision optics and, in particular, to the measure of V light; he was awarded the Nobel Prize in Physics in 1907 (the first American!).

  17. 17.

    Edward W. Morley (1838–1923): American chemist, mostly known for his work with Michelson.

  18. 18.

    George F. FitzGerald (1851–1901): Irish physicist, who worked mostly on Maxwell theory and electromagnetism.

  19. 19.

    Willem de Sitter (1872–1934): Dutch physicist and astronomer, famous for having introduced a cosmological model within general relativity, called de Sitter universe.

References

  • Aharonian F. et al., 2008, Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155–304, Phys. Rev. Lett. 101, 170402.

    Article  ADS  Google Scholar 

  • Alväger T., Farley F.J.M., Kjellman J. & Wallin, I., 1964, Test of the second postulate of special relativity in the GeV region, Physics Letters 12, 260.

    Article  ADS  Google Scholar 

  • Anderson C.D., 1932, The Apparent Existence of Easily Deflectable Positives, Science 76, 238.

    Article  ADS  Google Scholar 

  • Anderson C.D., 1933, The Positive Electron, Phys. Rev. 43, 491.

    Article  ADS  Google Scholar 

  • Arago F., 1853, Mémoire sur la vitesse de la lumière, lu à la première Classe de l’Institut, le 10 décembre 1810, Comptes Rendus des Séances de l’Académie des Sciences 36, 38; http://gallica.bnf.fr/ark:/12148/bpt6k2993z

  • Bailey J. et al., 1979, Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of relativistic time dilation, Nuclear Physics B 150, 1.

    Article  ADS  Google Scholar 

  • Bobis L. & Lequeux J., 2008, Cassini, Rømer, and the velocity of light, Journal of Astronomical History and Heritage 11, 97.

    ADS  Google Scholar 

  • Bradley J., 1728, Account of a New Discovered Motion of the Fix’d Stars, Philosophical Transactions of the Royal Society of London 35, 637; http://rstl.royalsocietypublishing.org/content/35/399-406.toc

  • Brecher K., 1977, Is the Speed of Light Independent of the Velocity of the Source?, Phys. Rev. Lett. 39, 1051.

    Article  ADS  Google Scholar 

  • Brillet A. & Hall J.L., 1979, Improved Laser Test of the Isotropy of Space, Phys. Rev. Lett. 42, 549.

    Article  ADS  Google Scholar 

  • Colladay D. & Kostelecký V.A., 1998, Lorentz-violating extension of the standard model, Phys. Rev. D 58, 116002.

    Article  ADS  Google Scholar 

  • Conversi M., Pancini E. & Piccioni O., 1947, On the Disintegration of Negative Mesons, Phys. Rev. 71, 209.

    Article  ADS  Google Scholar 

  • Darrigol O., 2000, Electrodynamics from Ampère to Einstein, Oxford University Press (Oxford).

    Google Scholar 

  • de Sitter W., 1913a, Ein astronomischer Beweis für die Kontanz der Lichtgeschwindigkeit, Physikalische Zeitschrift 14, 429; http://www.datasync.com/~rsf1/desitter.htm

  • de Sitter W., 1913b, Über die Genauigkeit, innerhalb welcher die Unabhängigkeit der Lichtgeschwindigkeit von der Bewegung der Quelle behauptet werden kann, Physikalische Zeitschrift 14, 1267; http://www.datasync.com/~rsf1/desitter.htm

  • de Sitter W., 1913c, A proof of the constancy of the velocity of light, Proceedings of the Section of Sciences - Koninklijke Academie van Wetenschappen – te Amsterdam, 15, 1297; 16, 305; http://www.datasync.com/~rsf1/desitter.htm

  • Ehlers J. & Lämmerzahl C. (eds.), 2006, Special Relativity: Will it Survive the Next 100 Years?, Lecture Notes in Physics vol. 702, Springer (Berlin).

    Google Scholar 

  • Einstein A., 1905c, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik 18, 639; http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_18_639-641.pdf Eng. tr. in Beck and Havas (1989), p. 172.

  • Eisele C., Nevsky A.Y. & Schiller S., 2009, Laboratory Test of the Isotropy of Light Propagation at the 10 −17 Level, Phys. Rev. Lett. 103, 090401.

    Article  ADS  Google Scholar 

  • Eisenstaedt J., 2007, From Newton to Einstein: A forgotten relativistic optics of moving bodies, Amer. J. Phys. 75, 741.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ellis G.F.R. & Uzan J.-P., 2005, c is the speed of light, isn’t it?, Amer. J. Phys. 73, 240.

    Article  ADS  Google Scholar 

  • Feinberg G., 1967, Possibility of Faster-Than-Light Particles, Phys. Rev. 159, 1089.

    Article  ADS  Google Scholar 

  • Ferraro R., 2007, Einstein’s Spacetime, Springer (New York).

    Google Scholar 

  • Ferraro R. & Sforza D.M., 2005, Arago (1810): the first experimental result against the ether, European Journal of Physics 26, 195.

    Article  ADS  MATH  Google Scholar 

  • FitzGerald G.F., 1889, The Ether and the Earth’s Atmosphere, Science 13, 390.

    ADS  Google Scholar 

  • Fizeau H., 1849, Sur une expérience relative à la vitesse de propagation de la lumière, Comptes Rendus des Séances de l’Académie des Sciences 29, 90; http://gallica.bnf.fr/ark:/12148/bpt6k2986m

  • Foucault L., 1862, Détermination expérimentale de la vitesse de la lumière; parallaxe du Soleil, Comptes Rendus des Séances de l’Académie des Sciences 55, 501; http://gallica.bnf.fr/ark:/12148/bpt6k3012g

  • Fresnel A.J., 1818, Lettre de M. Fresnel à M. Arago sur l’influence du mouvement terrestre dans quelques phénomènes d’optique, Annales de chimie et de physique 9, 57.

    Google Scholar 

  • Frisch D.H. & Smith J.H., 1963, Measurement of the Relativistic Time Dilation Using μ-Mesons, Amer. J. Phys. 31, 342.

    Article  ADS  Google Scholar 

  • Giulini D., 2005, Special Relativity, a first encounter, Oxford University Press (Oxford).

    Google Scholar 

  • Herrmann S., Senger A., Möhle K., Nagel M., Kovalchuk E.V. & Peters A., 2009, Rotating optical cavity experiment testing Lorentz invariance at the 10 −17 level, Phys. Rev. D 80, 105011.

    Article  ADS  Google Scholar 

  • Ives H.E. & Stilwell G.R., 1938, An Experimental Study of the Rate of a Moving Atomic Clock, Journal of the Optical Society of America 28, 215; http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-28-7-215

  • Kennedy R.J. & Thorndike E.M., 1932, Experimental Establishment of the Relativity of Time, Phys. Rev. 42, 400.

    Article  ADS  Google Scholar 

  • Kostelecký V.A. & Russel N., 2011, Data tables for Lorentz and CPT violation, Reviews of Modern Physics 83, 11.

    Article  ADS  Google Scholar 

  • Lämmerzahl C., 2006, Test Theories for Lorentz Invariance, in Ehlers and Lämmerzahl (2006), p. 349.

    Google Scholar 

  • Lattes C.M.G., Occhialini G.P.S. & Powell C.F., 1947, Observations on the Tracks of Slow Mesons in Photographic Emulsions, Nature 160, 453.

    Article  ADS  Google Scholar 

  • Laue M., 1907, Die Mitführung des Lichtes durch bewegte Körper nach dem Relativitätsprinzip, Annalen der Physik 23, 989; http://gallica.bnf.fr/ark:/12148/bpt6k153304.image.f993 Eng. tr.: http://en.wikisource.org/wiki/The_Entrainment_of_Light_by_Moving_Bodies_According_to_the_Principle_of_Relativity

  • Lorentz H.A., 1892, De relative beweging van de aarde en den aether, Koninklijke Akademie van Wetenschappen te Amsterdam, Wis-en Natuurkundige Afdeeling, Versalagen der Zittingen 1, 74; http://de.wikisource.org/wiki/Die_relative_Bewegung_der_Erde_und_des_%C3%84thers Eng. tr. in Collected papers, P. Zeeman & A.D. Fokker (eds.), Nijhjoff (The Hague) (1937), Vol. 4, p. 220.

  • Lorentz H.A., 1895, Versuch einer theorie der electrischen und optischen erscheinungen bewegten körpern, Brill (Leiden); Eng. tr. in Lorentz et al. (1923), p. 1; http://www.historyofscience.nl/search/detail.cfm?pubid=2690&view=image&startrow=1

  • Lorentz H.A., 1904, Electromagnetic phenomena in a system moving with any velocity smaller than that of light, Koninklijke Akademie van Wetenschappen te Amsterdam 6, 809; reprinted in Lorentz et al. (1923), p. 9; http://www.historyofscience.nl/search/detail.cfm?pubid=615&view=image&startrow=1

  • Mansouri R. & Sexl R.U., 1977, A test theory of special relativity. I. Simultaneity and clock synchronization, General Relativity and Gravitation 8, 497.

    Article  ADS  Google Scholar 

  • Mattingly D., 2005, Modern Tests of Lorentz Invariance, Living Reviews in Relativity 8, 5; http://www.livingreviews.org/lrr-2005-5

  • Michelson A.A. & Morley E.W., 1887, On the Relative Motion of the Earth and the Luminiferous Ether, American Journal of Science 34, 333; http://www.aip.org/history/gap/PDF/pdf.html

  • Miller A.I., 1998, Albert Einstein’s Special Theory of Relativity, Springer (New York).

    Google Scholar 

  • Müller H., Stanwix P.L., Tobar M.E., Ivanov E., Wolf P., Herrmann S., Senger A., Kovalchuk E., & Peters A., 2007, Tests of Relativity by Complementary Rotating Michelson-Morley Experiments, Phys. Rev. Lett. 99, 050401.

    Article  Google Scholar 

  • Neddermeyer S.H. & Anderson C.D., 1937, Note on the Nature of Cosmic-Ray Particles, Phys. Rev. 51, 884.

    Article  ADS  Google Scholar 

  • Poincaré H., 1904, L’état actuel et l’avenir de la physique mathématique, lecture given on 24 September 1904 at Saint Louis (USA), published in Bulletin des Sciences Mathématiques 28, 302, as well as Chaps. 8 and 9 of Poincaré (1905a); Eng. tr.: http://en.wikisource.org/wiki/The_Principles_of_Mathematical_Physics

  • Recami E., 1987, Tachyon kinematics and causality: A systematic thorough analysis of the tachyon causal paradoxes, Foundations of Physics 17, 239.

    Article  MathSciNet  ADS  Google Scholar 

  • Robertson H., 1949, Postulate versus Observation in the Special Theory of Relativity, Reviews of Modern Physics 21, 378.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rømer O. C., 1676, Démonstration touchant le mouvement de la lumière, Journal des Sçavans (1676), p. 233; http://gallica.bnf.fr/ark:/12148/bpt6k56527v

  • Rossi B. & Hall D.B., 1941, Variation of the Rate of Decay of Mesotrons with Momentum, Phys. Rev. 59, 223.

    Article  ADS  Google Scholar 

  • Simon Y., 2004, Relativité restreinte, Vuibert (Paris).

    Google Scholar 

  • Street J.C. & Stevenson E.C., 1937, New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron, Phys. Rev. 52, 1003.

    Article  ADS  Google Scholar 

  • Tonnelat M.-A., 1959, Les principes de la théorie électromagnétique et de la relativité, Masson (Paris).

    Google Scholar 

  • Tourrenc P., Melliti T. & Bosredon J., 1996, A Covariant Frame to Test Special Relativity Including Relativistic Gravitation, General Relativity and Gravitation 28, 1071.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Will C.M., 2006a, Special Relativity: A Centenary Perspective, in Damour et al. (2006), p. 33.

    Google Scholar 

  • Will C.M., 2006b, The Confrontation between General Relativity and Experiment, Living Reviews in Relativity 9, 3; http://www.livingreviews.org/lrr-2006-3

  • Wolf P., Bize S., Clairon A., Luiten A.N., Santarelli G. & Tobar M.E., 2003, Tests of Lorentz Invariance using a Microwave Resonator, Phys. Rev. Lett. 90, 060402.

    Article  ADS  Google Scholar 

  • Wolf P., Bize S, Tobar M.E., Chapelet F., Clairon A., Luiten A.N. & Santarelli G., 2006, Recent Experimental Tests of Special Relativity, in Ehlers and Lämmerzahl (2006), p. 451.

    Google Scholar 

  • Wolf P. & Petit G., 1997, Satellite test of special relativity using the global positioning system, Phys. Rev. A 56, 4405.

    Article  ADS  Google Scholar 

  • Wolf P., Tobar M.E., Bize S., Clairon A., Luiten A.N. & Santarelli G., 2004, Whispering Gallery Resonators and Tests of Lorentz Invariance, General Relativity and Gravitation 36, 2351.

    Article  ADS  MATH  Google Scholar 

  • Zhang Y.Z., 1997, Special Relativity and Its Experimental Foundation, World Scientific (Singapore).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gourgoulhon, É. (2013). Kinematics 1: Motion with Respect to an Observer. In: Special Relativity in General Frames. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37276-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37276-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37275-9

  • Online ISBN: 978-3-642-37276-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics