Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 957 Accesses

Abstract

Metal atomic chains (MACs) are extremely small one-dimensional structures [1]. They have unique physical properties due to the special structures, such as quantized conductance, quantum magnetoresistivity, and so on [2–5]. Therefore, MACs based devices have been proposed, such as the quantum electronic switches and integrated circuits of quantum electronic logic units [6]. However, due to the ultra-small dimensions of MACs, the manipulation, connection, and fabrication are extremely challenging. As we know, CNTs are one-dimensional structures with excellent electrical properties [7]. Recently, the fabrication of CNTs based nanodevices is becoming mature, and applications such as ballistic quantum wires, field-effect transistors and integrated circuits have been reported [8–10]. In addition, it was found that CNTs could form strong covalent bonds with metals, and the interface between them has small scattering for electron and spin transport [11, 12]. In this thesis, a new hybrid structure is designed, i.e. CNT-clamped MACs, in which CNTs are used as nanoscale conducting wires for the connection of MACs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agraït N, Yeyati AL, van Ruitenbeek JM (2003) Quantum properties of atomic-sized conductors. Phys Rep 377:81–279

    Article  Google Scholar 

  2. Krans JM, Vanruitenbeek JM, Fisun VV, Yanson IK, Dejongh LJ (1995) The signature of conductance quantization in metallic point contacts. Nature 375:767–769

    Article  CAS  Google Scholar 

  3. Ohnishi H, Kondo Y, Takayanagi K (1998) Quantized conductance through individual rows of suspended gold atoms. Nature 395:780–783

    Article  CAS  Google Scholar 

  4. Yanson AI, Bollinger GR, van den Brom HE, Agraït N, van Ruitenbeek JM (1998) Formation and manipulation of a metallic wire of single gold atoms. Nature 395:783–785

    Article  CAS  Google Scholar 

  5. Sokolov A, Zhang CJ, Tsymbal EY, Redepenning J, Doudin B (2007) Quantized magnetoresistance in atomic-size contacts. Nat Nanotechnol 2:171–175

    Article  CAS  Google Scholar 

  6. Smith DPE (1995) Quantum point-contact switches. Science 269:371–373

    Article  CAS  Google Scholar 

  7. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  8. Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Google Scholar 

  9. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  CAS  Google Scholar 

  10. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  CAS  Google Scholar 

  11. Rodríguez-Manzo JA, Banhart F, Terrones M, Terrones H, Grobert N, Ajayan PM, Sumpter BG, Meunier V, Wang M, Bando Y, Golberg D (2009) Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proc Natl Acad Sci USA 106:4591–4595

    Article  Google Scholar 

  12. Tsukagoshi K, Alphenaar BW, Ago H (1999) Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401:572–574

    Article  CAS  Google Scholar 

  13. Agraït N, Rodrigo JG, Vieira S (1993) Conductance steps and quantization in atomic-size contacts. Phys Rev B 47:12345–12348

    Article  Google Scholar 

  14. Kondo Y, Takayanagi K (1997) Gold nanobridge stabilized by surface structure. Phys Rev Lett 79:3455–3458

    Article  CAS  Google Scholar 

  15. Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys Rev Lett 69:140–143

    Article  CAS  Google Scholar 

  16. Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289:606–608

    Article  CAS  Google Scholar 

  17. Kondo Y, Ru Q, Takayanagi K (1999) Thickness induced structural phase transition of gold nanofilm. Phys Rev Lett 82:751–754

    Article  CAS  Google Scholar 

  18. Rodrigues V, Ugarte D (2001) Real-time imaging of atomistic process in one-atom-thick metal junctions. Phys Rev B 63:073405

    Article  Google Scholar 

  19. Rubio G, Agraït N, Vieira S (1996) Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys Rev Lett 76:2302

    Article  CAS  Google Scholar 

  20. Landauer R (1970) Electrical resistance of disordered one-dimensional lattices. Philos Mag 21:863

    Article  CAS  Google Scholar 

  21. Chopra HD, Sullivan MR, Armstrong JN, Hua SZ (2005) The quantum spin-valve in cobalt atomic point contacts. Nat Mater 4:832–837

    Article  CAS  Google Scholar 

  22. Tang D-M, Yin L-C, Li F, Liu C, Yu W-J, Hou P-X, Wu B, Lee Y-H, Ma X-L, Cheng H-M (2010) Carbon nanotube-clamped metal atomic chain. Proc Natl Acad Sci USA 107:9055–9059

    Article  CAS  Google Scholar 

  23. Rodrigues V, Fuhrer T, Ugarte D (2000) Signature of atomic structure in the quantum conductance of gold nanowires. Phys Rev Lett 85:4124–4127

    Article  CAS  Google Scholar 

  24. Rego LGC, Rocha AR, Rodrigues V, Ugarte D (2003) Role of structural evolution in the quantum conductance behavior of gold nanowires during stretching. Phys Rev B 67:045412

    Article  Google Scholar 

  25. Diao JK, Gall K, Dunn ML (2003) Surface-stress-induced phase transformation in metal nanowires. Nat Mater 2:656–660

    Article  CAS  Google Scholar 

  26. Bettini J, Sato F, Coura PZ, Dantas SO, Galvão DS, Ugarte D (2006) Experimental realization of suspended atomic chains composed of different atomic species. Nat Nanotechnol 1:182–185

    Article  CAS  Google Scholar 

  27. Zhang JM, Ma F, Xu KW (2004) Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl Surf Sci 229:34–42

    Article  CAS  Google Scholar 

  28. Zhang J-M, Wang D-D, Xu K-W (2006) Calculation of the surface energy of bcc transition metals by using the second nearest-neighbor modified embedded atom method. Appl Surf Sci 252:8217–8222

    Article  CAS  Google Scholar 

  29. Wood IG, Vocadlo L, Knight KS, Dobson DP, Marshall WG, Price GD, Brodholt J (2004) Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction. J Appl Crystallogr 37:82–90

    Article  CAS  Google Scholar 

  30. Brandbyge M, Schiøtz J, Sørensen MR, Stoltze P, Jacobsen KW, Nørskov JK, Olesen L, Laegsgaard E, Stensgaard I, Besenbacher F (1994) Quantized conductance in an atom-sized point contact. Phys Rev Lett 72:2251

    Article  Google Scholar 

  31. de Picciotto R, Stormer HL, Pfeiffer LN, Baldwin KW, West KW (2001) Four-terminal resistance of a ballistic quantum wire. Nature 411:51–54

    Article  Google Scholar 

  32. Komori F, Nakatsuji K (1999) Quantized conductance through atomic-sized iron contacts at 4.2 K. J Phys Soc Jpn 68:3786–3789

    Article  CAS  Google Scholar 

  33. Mehrez H, Wlasenko A, Larade B, Taylor J, Grütter P, Guo H (2002) I–V characteristics and differential conductance fluctuations of Au nanowires. Phys Rev B 65:195419

    Article  Google Scholar 

  34. Kyotani T, Pradhan BK, Tomita A (1999) Synthesis of carbon nanotube composites in nanochannels of an anodic aluminum oxide film. Bull Chem Soc Jpn 72:1957–1970

    Article  CAS  Google Scholar 

  35. Rodrigues V, Bettini J, Silva PC, Ugarte D (2003) Evidence for spontaneous spin-polarized transport in magnetic nanowires. Phys Rev Lett 91:096801

    Article  Google Scholar 

  36. Smit RHM, Untiedt C, Yanson AI, van Ruitenbeek JM (2001) Common origin for surface reconstruction and the formation of chains of metal atoms. Phys Rev Lett 87:266102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Ming Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, DM. (2013). Fabrication and Property Investigation of Carbon Nanotube-Clamped Metal Atomic Chains. In: In Situ Transmission Electron Microscopy Studies of Carbon Nanotube Nucleation Mechanism and Carbon Nanotube-Clamped Metal Atomic Chains. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37259-9_4

Download citation

Publish with us

Policies and ethics