Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 987 Accesses

Abstract

In 1959, Nobel laureate Richard Feynman gave a speech entitled “There’s Plenty of Room at the Bottom”. In his speech, he talked about the manipulation and control of materials on a small length scale, such as the fabrication of molecular machines. In 1982, Binnig et al. invented scanning tunneling microscope (STM) [1]. In 1990, Eigler et al. demonstrated the ability of arranging atoms and put 35 Xe atoms on the surface of Ni crystal patterned as “IBM” [2]. However, STM is based on the tunneling current and requires a conductive surface. Binning et al. invented atomic force microscopy (AFM) [3], which is based on the interacting forces between the scanning probe and sample surface. Recently, the resolution and manipulation precision of AFMs has reached atomic level [4]. What scanning probe microscopy (SPM) has in common is that the observations and manipulations are limited to the surface, lacking insights into the structural mechanisms. In addition, scanning is involved for both imaging and manipulation, which limits the efficiency. As already been introduced in Chap. 1, TEM is a powerful tool for the materials structural characterizations with atomic resolution. In recent years, it is possible to combine SPM with TEM to conduct high-resolution structural characterizations in three dimensions and precise manipulations of nanomaterials simultaneously [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Article  CAS  Google Scholar 

  2. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunnelling microscope. Nature 344:524–526

    Article  CAS  Google Scholar 

  3. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930

    Article  Google Scholar 

  4. Custance O, Perez R, Morita S (2009) Atomic force microscopy as a tool for atom manipulation. Nat Nano 4:803–810

    Article  CAS  Google Scholar 

  5. Banhart F (2008) In-situ electron microscopy at high resolution. World Scientific, Singapore

    Book  Google Scholar 

  6. Zewail AH (2010) Four-dimensional electron microscopy. Science 328:187–193

    Article  CAS  Google Scholar 

  7. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Article  CAS  Google Scholar 

  8. Egerton RF, Wang F, Crozier PA (2006) Beam-induced damage to thin specimens in an intense electron probe. Microsc Microanal 12:65–71

    Article  CAS  Google Scholar 

  9. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science. Springer, New York

    Book  Google Scholar 

  10. Eligal L, Culfaz F, McCaughan V, Cade NI, Richards D (2009) Etching gold tips suitable for tip-enhanced near-field optical microscopy. Rev Sci Instrum 80:033701

    Article  Google Scholar 

  11. Williams C, Roy D (2008) Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy. J Vac Sci Technol, B 26:1761–1764

    Article  CAS  Google Scholar 

  12. Jin CH, Wang JY, Wang MS, Su J, Peng LM (2005) In-situ studies of electron field emission of single carbon nanotubes inside the TEM. Carbon 43:1026–1031

    Article  CAS  Google Scholar 

  13. Huang JY, Chen S, Wang ZQ, Kempa K, Wang YM, Jo SH, Chen G, Dresselhaus MS, Ren ZF (2006) Superplastic carbon nanotubes—Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes. Nature 439:281

    Article  CAS  Google Scholar 

  14. Golberg D, Costa PMFJ, Lourie O, Mitome M, Bai X, Kurashima K, Zhi C, Tang C, Bando Y (2007) Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett 7:2146–2151

    Article  CAS  Google Scholar 

  15. Svensson K, Olin H, Olsson E (2004) Nanopipettes for metal transport. Phys Rev Lett 93:145901

    Article  CAS  Google Scholar 

  16. Cumings J, Zettl A (2000) Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289:602–604

    Article  CAS  Google Scholar 

  17. Sun L, Banhart F, Krasheninnikov AV, Rodríguez-Manzo JA, Terrones M, Ajayan PM (2006) Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312:1199–1202

    Article  CAS  Google Scholar 

  18. Wang Y, Perdew JP (1991) Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys Rev B 44:13298

    Article  Google Scholar 

  19. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  20. Kresse G, Furthmüllerr J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  21. Lv RT, Kang FY, Wang WX, Wei JQ, Gu JL, Wang KL, Wu DH (2007) Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes. Carbon 45:1433–1438

    Article  CAS  Google Scholar 

  22. Tang D-M, Yin L-C, Li F, Liu C, Yu W-J, Hou P-X, Wu B, Lee Y-H, Ma X-L, Cheng H-M (2010) Carbon nanotube-clamped metal atomic chain. Proc Natl Acad Sci USA 107:9055–9059

    Article  CAS  Google Scholar 

  23. Kyotani T, Pradhan BK, Tomita A (1999) Synthesis of carbon nanotube composites in nanochannels of an anodic aluminum oxide film. Bull Chem Soc Jpn 72:1957–1970

    Article  CAS  Google Scholar 

  24. Liu B, Tang D-M, Sun C, Liu C, Ren W, Li F, Yu W-J, Yin L-C, Zhang L, Jiang C, Cheng H-M (2011) Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor–solid–solid mechanism. J Am Chem Soc 133:197–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Ming Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, DM. (2013). In Situ TEM Method and Materials. In: In Situ Transmission Electron Microscopy Studies of Carbon Nanotube Nucleation Mechanism and Carbon Nanotube-Clamped Metal Atomic Chains. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37259-9_2

Download citation

Publish with us

Policies and ethics