A Combined Method Based on Stochastic and Linguistic Paradigm for the Understanding of Arabic Spontaneous Utterances

  • Chahira Lhioui
  • Anis Zouaghi
  • Mounir Zrigui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7817)


ASTI is an Arabic-speaking spoken language understanding (SLU) system which carries out two kinds of analysis which are relatively opposed. It is designed for touristic field to tell trippers about something that interests them. Based on a dual approach, the system adapts the idea of stochastic approach to the probabilistic context free grammar (PCFG) (approach based on rules). This paper provides a detailed description of ASTI system as well as well as results compared with several international ones. The observed error rates suggest that our combined approach can stand a comparison with concept spotters on larger application domains.


Hidden Markov Model (HMM) Probabilistic Grammar free Context PCFG corpus Wizard of Oz 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahou, Y., Belguith, H.L., Ben Hamadou, A.: Towards a Human-Machine Spoken Dialogue in Arabic. In: 6th Language Resources and Evaluation Conference (LREC 2008),Workshop HLT Within the Arabic World. Arabic Language and Local Languages Processing Status Updates and Prospects, Marrakech, Morocco (2008b)Google Scholar
  2. 2.
    Hadrich Belguith, L., Bahou, Y., Ben Hamadou, A.: Une méthode guidée par la sémantique pour la compréhension automatique des énoncés oraux arabes. International Journal of Information Sciences for Decision Making (ISDM) 35 (Septembre 2009)Google Scholar
  3. 3.
    Bonneau Maynard, H., Rosset, S., Ayache, C., Kuhn, A., Mostefa, D.: Semantic Annotation of the French Media Dialog Corpus. In: 9th European Conference on Speech Communication and Technology (2005)Google Scholar
  4. 4.
    Chelba, Jelinek, F.: Structured language modeling. Computer, Speech and Language 14(4), 283–332 (2000)Google Scholar
  5. 5.
    El-Bèze, Sprit, T.: Stratégie mixte d’étiquetage syntaxique : Statistiques et connaissances Revue TAL 36(1-2), 47–66 (1995) Google Scholar
  6. 6.
    Minker, W.: Compréhension Automatique de la Parole Spontanée. L’Harmattan (1999)Google Scholar
  7. 7.
    Minker, W., Bennacef, S.: Speech And Human-Machine Dialog. Kluwer Academic Publishers Group, Pays-Bas (2004)zbMATHGoogle Scholar
  8. 8.
    Riccardi, Gorin, A.L.: Stochastic language adaptation over time and state in natural spoken dialogue systems. IEEE Transactions on Speech and Audio Processing 8(1), 3–10 (2000) Google Scholar
  9. 9.
    Sallomaa: Probabilistic and weighted grammars. Information and Control, 15, 529–544 (1969)Google Scholar
  10. 10.
    Zouaghi, A., Zrigui, M., Antoniadis, G.: Compréhension Automatique de la Parole Arabe Spontanée. Une Modélisation Numérique, Traitement Automatique des Langues (TAL 2008) 49(1), 141–166 (2008)Google Scholar
  11. 11.
    Zouaghi, A., Zrigui, M., Ben Ahmed, M.: Un Étiqueteur Sémantique des Énoncés en Langue Arabe. In: Actes de la 12ème Conférence sur le Traitement Automatique des Langues Naturelles (TALNRECITAL 2005), Dourdan, France (2005)Google Scholar
  12. 12.
    Collins, M.: Probabilistic Context-Free Grammars (PCFGs),
  13. 13.
    Brill, E.: Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of speech Tagging. Computational Linguistics 21, 4 (1995b)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chahira Lhioui
    • 1
    • 4
  • Anis Zouaghi
    • 2
  • Mounir Zrigui
    • 3
  1. 1.ISIM of MedenineGabes UniversityMedenineTunisia
  2. 2.ISSAT of SousseSousse UniversityTaffala city (Ibn Khaldoun)Tunisia
  3. 3.FSM of MonastirMonastir UniversityMonastirTunisia
  4. 4.LATICE LaboratoryESSTT TunisTunisia

Personalised recommendations