Link Analysis for Representing and Retrieving Legal Information

  • Alfredo López Monroy
  • Hiram Calvo
  • Alexander Gelbukh
  • Georgina García Pacheco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7817)


Legal texts consist of a great variety of texts, for example laws, rules, statutes, etc. This kind of documents has as an important feature, that they are strongly linked among them, since they include references from one part to another. This makes it difficult to consult them, because in order to satisfy an information request, it is necessary to gather several references and rulings from a single text, and even with other texts. The goal of this work is to help in the process of consulting legal rulings through their retrieval from a request expressed as a question in natural language. For this, a formal model is proposed; this model is based on a weighted, non-directed graph; nodes represent the articles that integrate each document, and its edges represent references between articles and their degree of similarity. Given a question, this is added to the graph, and by combining a shortest-path algorithm with edge weight analysis, a ranked list of articles is obtained. To evaluate the performance of the proposed model we gathered 8,987 rulings and evaluated the answer to 40 test-questions as correct, incorrect or partial. A lawyer validated the answer to these questions. We compared results with other systems such as Lucene and JIRS (Java Information Retrieval System)


Information Retrieval Link Analysis Academic Staff Information Retrieval System Question Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ríos-Estavillo, J.J.: Derecho e informática en México. [en línea], México, Instituto de Investigaciones Jurídicas (Universidad Nacional Autónoma de México), Serie E: Varios (Núm. 83) (1997), Formato pdf, Disponible en Internet, [citado 1-04-12]
  2. 2.
    Kerrigan, S., Law, K.H.: Logic-based regulation compliance-assistance. In: Proceedings of the 9th International Conference on Artificial Intelligence and Law, pp. 126–135. ACM, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Moens, M.F.: Improving Access to Legal Information: How Drafting Systems Help. In: Lodder, A.R., Oskamp, A. (eds.) Information Technology & Lawyers: Advanced Technology in the Legal Domain, from Challenges to Daily Routines, pp. 119–136. Springer, The Netherlands (2006)CrossRefGoogle Scholar
  4. 4.
    Monroy, A., Calvo, H., Gelbukh, A.: NLP for Shallow Question Answering of Legal Documents Using Graphs. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 498–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Turtle, H.R.: Text Retrieval in the Legal World. Artificial Intelligence and Law 3(1), 5–54 (1995)CrossRefGoogle Scholar
  6. 6.
    Alvite Díez, M.: Tendencias a la investigación sobre la recuperación de Información Jurídica. Revista española de Documentación Científica 26(2) (2003)Google Scholar
  7. 7.
    Peñas, A., Forner, P., Rodrigo, A., Sutcliffe, R., Forascu, C., Mota, C.: Overview of ResPubliQA 2010: Question Answering Evaluation over European Legislation. In: Notebook Paper of CLEF, Workshop on Question Answering in Multiple Languages (MLQA 2010), Padua, Italy (2010)Google Scholar
  8. 8.
    Peñas, A., Forner, P., Sutcliffe, R., Rodrigo, Á., Forăscu, C., Alegria, I., Giampiccolo, D., Moreau, N., Osenova, P.: Overview of ResPubliQA 2009: Question Answering Evaluation over European Legislation. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 174–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Barmakian, D.: Better search engines for law. Law Library Journal 92(4), 399–438 (2000)Google Scholar
  10. 10.
    Daniels, J.J., Rissland, E.L.: Finding legally relevant passages in case opinions. In: Proceedings of the 6th International Conference on Artificial Intelligence and Law, pp. 39–46. ACM, New York (2000)Google Scholar
  11. 11.
    Salton, G., Allan, J., Buckley, C.: Approaches to passage retrieval in full text information systems. In: Korfhage, R., Rasmussen, E., Willett, P. (eds.) Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 49–58. ACM, New York (1993)CrossRefGoogle Scholar
  12. 12.
    Buscaldi, D., Rosso, P., Gómez, J.M., Sanchis, E.: Answering Questions with an n-gram based Passage Retrieval Engine. Journal of Intelligent Information Systems 34(2), 113–134 (2010)CrossRefGoogle Scholar
  13. 13.
    Correa, S., Buscaldi, D., Rosso, P.: NLEL-MAAT at ResPubliQA. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 223–228. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Stranieri, A., Zeleznikow, J.: Knowledge discovery from legal databases-using networks and data mining to build legal decision support systems. In: Lodder, A.R., Oskamp, A. (eds.) Information Technology & Lawyers: Advanced Technology in the Legal Domain, from Challenges to Daily Routines, pp. 81–117. Springer, The Netherlands (2006)CrossRefGoogle Scholar
  15. 15.
    Mercatali, P., Romano, F., Boschi, L., Spinicci, E.: Automatic Translation from Textual Representations of Laws to Formal Models through UML. In: Moens, M.F., Spyns, P. (eds.) Proceedings of the, Conference on Legal Knowledge and Information Systems, pp. 71–80. IOS Press, Amsterdam (2005)Google Scholar
  16. 16.
    Francesconi, E.: The Norme in Rete Project: Standards and Tools for Italian Legislation. International Journal of Legal Information 34(2), 357–376 (2006)Google Scholar
  17. 17.
    Lau, G.T., Law, K.H., Wiederhold, G.: A relatedness analysis of government regulations using domain knowledge and structural organization. Information Retrieval 9(6), 657–680 (2006)CrossRefGoogle Scholar
  18. 18.
    Monroy, A., Calvo, H., Gelbukh, A.: Using Graphs for Shallow Question Answering on Legal Documents. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 165–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Geist, A.: Using Citation Analysis Techniques for Computer-Assisted Legal Research in Continental Jurisdictions (2009), Available at SSRN: or
  20. 20.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Brin, S., Page, L.: The anatomy of a large-scale hyper- textual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  22. 22.
    Mihalcea, R.: Graph-based Ranking Algorithms for Sentence Extraction, Applied to Text Summarization. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, Companion Volume (ACL 2004), Barcelona, Spain (2004)Google Scholar
  23. 23.
    Mihalcea, R., Tarau, P., Figa, E.: PageRank on Semantic Networks, with application to Word Sense Disambiguation. In: Proceedings of The 20st International Conference on Computational Linguistics (COLING 2004), Switzerland, Geneva (2004)Google Scholar
  24. 24.
    Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alfredo López Monroy
    • 1
  • Hiram Calvo
    • 1
  • Alexander Gelbukh
    • 1
  • Georgina García Pacheco
    • 2
  1. 1.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMéxico, D.F.Mexico
  2. 2.ESIME-ZacatencoInstituto Politécnico NacionalMéxico, D.F.Mexico

Personalised recommendations