Advertisement

A Model for Information Extraction in Portuguese Based on Text Patterns

  • Tiago Luis Bonamigo
  • Renata Vieira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7817)

Abstract

This paper proposes an information extraction model that identifies text patterns representing relations between two entities. It is proposed that, given a set of entity pairs representing a specific relation, it is possible to find text patterns representing such relation within sentences from documents containing those entites. After those text patterns are identified, it is possible to attempt the extraction of a complementary entity, considering the first entity of the relation and the related text patterns are provided. The pattern selection relies on regular expressions, frequency and identification of less relevant words. Modern search engines APIs and HTML parsers are used to retrieve and parse web pages in real time, eliminating the need of a pre-established corpus. The retrieval of document counts within a timeframe is also used to aid in the selection of the entities extracted.

Keywords

Information Extraction Text Pattern Relation Extraction Portuguese Language Entity Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.R.: StatSnowball: a statistical approach to extracting entity relationships. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 101–110. ACM, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: An experimental study. Artif. Intell. 165(1), 91–134 (2005)CrossRefGoogle Scholar
  4. 4.
    Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., Soderland, S.: TextRunner: open information extraction on the web. In: Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. NAACL-Demonstrations 2007, Stroudsburg, PA, USA, pp. 25–26. Association for Computational Linguistics (2007)Google Scholar
  5. 5.
    Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: ACL, pp. 118–127 (2010)Google Scholar
  6. 6.
    Etzioni, O., Fader, A., Christensen, J., Soderland, S.: Mausam: Open information extraction: The second generation. In: Walsh, T. (ed.) IJCAI, IJCAI/AAAI, pp. 3–10 (2011)Google Scholar
  7. 7.
    Brucksen, M., Souza, J.G.C., Vieira, R., Rigo, S.: Sistema SeRELeP para o reconhecimento de relações entre entidades mencionadas. In: Mota, C., Santos, D. (eds.) Segundo HAREM, ch. 14, pp. 247–260. Linguateca (2008)Google Scholar
  8. 8.
    Cardoso, N.: REMBRANDT – Reconhecimento de entidades mencionadas baseado em relações e análise detalhada do texto. In: Mota, C., Santos, D. (eds.) Segundo HAREM, ch. 11, pp. 195–211. Linguateca (2008)Google Scholar
  9. 9.
    Santos, D., Seco, N., Cardoso, N., Vilela, R.: Harem: An advanced ner evaluation contest for portuguese. In: Odjik, Tapias, D. (eds.) Proceedings of LREC 2006 (LREC 2006), Genoa, pp. 22–28 (2006)Google Scholar
  10. 10.
    Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Comput. Linguist. 20(4), 535–561 (1994)Google Scholar
  11. 11.
    Interbrand: 2011 ranking of the top 100 brands, http://www.interbrand.com/en/best-global-brands/best-global-brands-2008/best-global-brands-2011.aspx (January 2012) (acessado: June 12, 2012)
  12. 12.
    CIA: The world factbook 2009. Central Intelligence Agency, Washington D.C (2009)Google Scholar
  13. 13.
    Corporation, G.: Google Custom Search API (January 2012), https://developers.google.com/custom-search/v1/overview (acessado: November 19, 2012)
  14. 14.
    Mourier, S.: Htmlagilitypack (October 2012), http://htmlagilitypack.codeplex.com (acessado: November 14, 2012)
  15. 15.
    Branco, A., Silva, J.A.: Evaluating Solutions for the Rapid Development of State-of-the-Art POS Taggers for Portuguese. In: Lino, M.T., Xavier, M.F., Ferreira, F., Costa, R., Silva, R. (eds.) LREC 2004, pp. 507–510 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tiago Luis Bonamigo
    • 1
  • Renata Vieira
    • 1
  1. 1.Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil

Personalised recommendations