Skip to main content
  • 2624 Accesses

Abstract

Acoustic rhinometry was introduced as an objective tool for the assessment of the nasal cavity geometry in 1989 by Hilberg et al. Acoustic rhinometry is potentially useful in the assessment of the nasal cavity geometry, nasal patency and the results of various medical and surgical therapies. However, interpretations that do not consider the limitations of the technique may easily lead to misinterpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Acoustic rhinometry

CT:

Computed tomography

MRI:

Magnetic resonance imaging

References

  • Andre RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenite GJ. Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol. 2009;34:518–25.

    Article  PubMed  CAS  Google Scholar 

  • Antila J, Sipila J, Tshushima Y, Polo O, Laurikainen E, Suonpaa J. The effect of laser-uvulopalatopharyngoplasty on the nasal and nasopharyngeal volume measured with acoustic rhinometry. Acta Otolaryngol Suppl. 1997;529:202–5.

    Article  PubMed  CAS  Google Scholar 

  • Aydin E, Hizal E, Onay O, Ozgen B, Turhan B, Zaimoglu M, et al. A double-blind, placebo-controlled, randomized clinical study of the effects of vardenafil on human nasal patency. Am J Rhinol. 2008;22:276–9.

    Article  PubMed  Google Scholar 

  • Batra PS, Seiden AM, Smith TL. Surgical management of adult inferior turbinate hypertrophy: a systematic review of the evidence. Laryngoscope. 2009;119:1819–27.

    Article  PubMed  Google Scholar 

  • Buenting JE, Dalston RM, Drake AF. Nasal cavity area in term infants determined by acoustic rhinometry. Laryngoscope. 1994a;104:1439–45.

    Article  PubMed  CAS  Google Scholar 

  • Buenting JE, Dalston RM, Smith TL, Drake AF. Artifacts associated with acoustic rhinometric assessment of infants and young children: a model study. J Appl Physiol. 1994b;77:2558–63.

    PubMed  CAS  Google Scholar 

  • Cakmak O, Celik H, Ergin T, Sennaroglu L. Accuracy of acoustic rhinometry measurements. Laryngoscope. 2001;111:587–94.

    Article  PubMed  CAS  Google Scholar 

  • Cakmak O, Celik H, Cankurtaran M, Buyuklu F, Ozgirgin N, Ozluoglu LN. Effects of paranasal sinus ostia and volume on acoustic rhinometry measurements: a model study. J Appl Physiol. 2003a;94:1527–35.

    Article  PubMed  Google Scholar 

  • Cakmak O, Coskun M, Celik H, Buyuklu F, Ozluoglu LN. Value of acoustic rhinometry for measuring nasal valve area. Laryngoscope. 2003b;113:295–302.

    Article  PubMed  Google Scholar 

  • Cakmak O, Celik H, Cankurtaran M, Ozluoglu LN. Effects of anatomical variations of the nasal cavity on acoustic rhinometry measurements: a model study. Am J Rhinol. 2005a;19:262–8.

    PubMed  Google Scholar 

  • Cakmak O, Tarhan E, Coskun M, Cankurtaran M, Celik H. Acoustic rhinometry: accuracy and ability to detect changes in passage area at different locations in the nasal cavity. Ann Otol Rhinol Laryngol. 2005b;114:949–57.

    PubMed  Google Scholar 

  • Cankurtaran M, Celik H, Cakmak O, Ozluoglu LN. Effects of the nasal valve on acoustic rhinometry measurements: a model study. J Appl Physiol. 2003;94:2166–72.

    PubMed  Google Scholar 

  • Cankurtaran M, Celik H, Coskun M, Hizal E, Cakmak O. Acoustic rhinometry in healthy humans: accuracy of area estimates and ability to quantify certain anatomic structures in the nasal cavity. Ann Otol Rhinol Laryngol. 2007;116:906–16.

    PubMed  Google Scholar 

  • Celik H, Cankurtaran M, Cakmak O. Acoustic rhinometry measurements in stepped-tube models of the nasal cavity. Phys Med Biol. 2004;49:371–86.

    Article  PubMed  Google Scholar 

  • Corey JP, Gungor A, Nelson R, Fredberg J, Lai V. A comparison of the nasal cross-sectional areas and volumes obtained with acoustic rhinometry and magnetic resonance imaging. Otolaryngol Head Neck Surg. 1997;117:349–54.

    Article  PubMed  CAS  Google Scholar 

  • Dastidar P, Numminen J, Heinonen T, Ryymin P, Rautiainen M, Laasonen E. Nasal airway volumetric measurement using segmented HRCT images and acoustic rhinometry. Am J Rhinol. 1999;13:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Djupesland PG, Lyholm B. Nasal airway dimensions in term neonates measured by continuous wide-band noise acoustic rhinometry. Acta Otolaryngol. 1997;117:424–32.

    Article  PubMed  CAS  Google Scholar 

  • Fisher EW, Scadding GK, Lund VJ. The role of acoustic rhinometry in studying the nasal cycle. Rhinology. 1993;31:57–61.

    PubMed  CAS  Google Scholar 

  • Fisher EW, Morris DP, Biemans JM, Palmer CR, Lund VJ. Practical aspects of acoustic rhinometry: problems and solutions. Rhinology. 1995;33:219–23.

    PubMed  CAS  Google Scholar 

  • Fouke JM, Jackson AC. Acoustic rhinometry: effects of decongestants and posture on nasal patency. J Lab Clin Med. 1992;119:371–6.

    PubMed  CAS  Google Scholar 

  • Foxen EH, Preston TD, Lack JA. The assessment of nasal air-flow: a review of past and present methods. J Laryngol Otol. 1971;85:811–25.

    Article  PubMed  CAS  Google Scholar 

  • Fredberg JJ, Wohl ME, Glass GM, Dorkin HL. Airway area by acoustic reflections measured at the mouth. J Appl Physiol. 1980;48:749–58.

    PubMed  CAS  Google Scholar 

  • Friedman M, Vidyasagar R, Joseph N. A randomized, prospective, double-blind study on the efficacy of dead sea salt nasal irrigations. Laryngoscope. 2006;116:878–82.

    Article  PubMed  CAS  Google Scholar 

  • Gilain L, Coste A, Ricolfi F, Dahan E, Marliac D, Peynegre R, et al. Nasal cavity geometry measured by acoustic rhinometry and computed tomography. Arch Otolaryngol Head Neck Surg. 1997;123:401–5.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton JW, McRae RD, Jones AS. The magnitude of random errors in acoustic rhinometry and re-interpretation of the acoustic profile. Clin Otolaryngol Allied Sci. 1997;22:408–13.

    Article  PubMed  CAS  Google Scholar 

  • Hilberg O. Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects. Allergy. 2002;57 Suppl 70:5–39.

    Article  PubMed  Google Scholar 

  • Hilberg O, Pedersen OF. Acoustic rhinometry: recommendations for technical specifications and standard operating procedures. Rhinol Suppl. 2000;16:3–17.

    PubMed  CAS  Google Scholar 

  • Hilberg O, Jackson AC, Swift DL, Pedersen OF. Acoustic rhinometry: evaluation of nasal cavity geometry by acoustic reflection. J Appl Physiol. 1989;66:295–303.

    PubMed  CAS  Google Scholar 

  • Hilberg O, Jensen FT, Pedersen OF. Nasal airway geometry: comparison between acoustic reflections and magnetic resonance scanning. J Appl Physiol. 1993;75:2811–9.

    PubMed  CAS  Google Scholar 

  • Hilberg O, Lyholm B, Michelsen A, Pedersen OF, Jacobsen O. Acoustic reflections during rhinometry: spatial resolution and sound loss. J Appl Physiol. 1998;84:1030–9.

    PubMed  CAS  Google Scholar 

  • Hochban W, Althoff H, Ziegler A. Nasal decongestion with imidazoline derivatives: acoustic rhinometry measurements. Eur J Clin Pharmacol. 1999;55:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Hoffstein V, Fredberg JJ. The acoustic reflection technique for non-invasive assessment of upper airway area. Eur Respir J. 1991;4:602–11.

    PubMed  CAS  Google Scholar 

  • Holmstrom M. The use of objective measures in selecting patients for septal surgery. Rhinology. 2010;48:387–93.

    PubMed  Google Scholar 

  • Jackson AC, Butler JP, Millet EJ, Hoppin Jr FG, Dawson SV. Airway geometry by analysis of acoustic pulse response measurements. J Appl Physiol. 1977;43:523–36.

    PubMed  CAS  Google Scholar 

  • Kaise T, Ukai K, Pedersen OF, Sakakura Y. Accuracy of measurement of acoustic rhinometry applied to small experimental animals. Am J Rhinol. 1999;13:125–9.

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Jang TY. Clinical characteristics and therapeutic outcomes of patients with localized mucosal allergy. Am J Rhinol Allergy. 2010;24:e89–92.

    Article  PubMed  Google Scholar 

  • Lal D, Gorges ML, Ungkhara G, Reidy PM, Corey JP. Physiological change in nasal patency in response to changes in posture, temperature, and humidity measured by acoustic rhinometry. Am J Rhinol. 2006;20:456–62.

    Article  PubMed  Google Scholar 

  • Leighton TG. Ocean acoustics. In: Fahy F, Walker JG, editors. Fundamentals of noise and vibration. E&FN Spon, London, UK; 1998. p. 375.

    Google Scholar 

  • Li AM, Abdullah VJ, Tsen CS, Au CT, Lam HS, So HK, et al. Leukotriene receptor antagonist in the treatment of childhood allergic rhinitis – a randomized placebo-controlled study. Pediatr Pulmonol. 2009;44:1085–92.

    Article  PubMed  Google Scholar 

  • Louis B, Glass GM, Fredberg JJ. Pulmonary airway area by the two-microphone acoustic reflection method. J Appl Physiol. 1994;76:2234–40.

    PubMed  CAS  Google Scholar 

  • Lundqvist GR, Pedersen OF, Hilberg O, Nielsen B. Nasal reaction to changes in whole body temperature. Acta Otolaryngol. 1993;113:783–8.

    Article  PubMed  CAS  Google Scholar 

  • Min YG, Jang YJ. Measurements of cross-sectional area of the nasal cavity by acoustic rhinometry and CT scanning. Laryngoscope. 1995;105:757–9.

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Eccles R. Objective evidence for the efficacy of surgical management of the deviated septum as a treatment for chronic nasal obstruction: a systematic review. Clin Otolaryngol. 2011;36:106–13.

    Article  PubMed  CAS  Google Scholar 

  • Mostafa BE. Detection of adenoidal hypertrophy using acoustic rhinomanometry. Eur Arch Otorhinolaryngol. 1997;254 Suppl 1:S27–9.

    Article  PubMed  Google Scholar 

  • Mygind N, Dahl R. Challenge tests in nose and bronchi: pharmacological modulation of rhinitis and asthma. Clin Exp Allergy. 1996;26 Suppl 3:39–43.

    Article  PubMed  CAS  Google Scholar 

  • O’Flynn P. Acoustic rhinometry: validation of volume changes following intra-nasal polypectomy. Clin Otolaryngol Allied Sci. 1993;18:423–5.

    Article  PubMed  Google Scholar 

  • Riechelmann H, Rheinheimer MC, Wolfensberger M. Acoustic rhinometry in pre-school children. Clin Otolaryngol Allied Sci. 1993;18:272–7.

    Article  PubMed  CAS  Google Scholar 

  • Riechelmann H, O’Connell JM, Rheinheimer MC, Wolfensberger M, Mann WJ. The role of acoustic rhinometry in the diagnosis of adenoidal hypertrophy in pre-school children. Eur J Pediatr. 1999;158:38–41.

    Article  PubMed  CAS  Google Scholar 

  • Rimmer J, Greenwood A, Bartlett D, Hellgren J. Nasal steroids improve regulation of nasal patency in asthma and mild rhinitis: a randomised, cross-over trial. Eur Arch Otorhinolaryngol. 2012;269:1133–8.

    Article  PubMed  Google Scholar 

  • Samolinski B, Grzanka A, Zawisza E, Arcimowicz M. Acoustic rhinometry in the assessment of the topical treatment of upper respiratory infections with fusafungin. Otolaryngol Pol. 1998;52:327–34.

    PubMed  CAS  Google Scholar 

  • Straszek S. Validation of acoustic rhinometry in laboratory animals. Thesis, University of Aarhus; 2008.

    Google Scholar 

  • Straszek SP, Pedersen OF. Nasal cavity dimensions in guinea pig and rat measured by acoustic rhinometry and fluid-displacement method. J Appl Physiol. 2004;96:2109–14.

    Article  PubMed  Google Scholar 

  • Tarhan E, Coskun M, Cakmak O, Celik H, Cankurtaran M. Acoustic rhinometry in humans: accuracy of nasal passage area estimates, and ability to quantify paranasal sinus volume and ostium size. J Appl Physiol. 2005;99:616–23.

    Article  PubMed  Google Scholar 

  • Terheyden H, Maune S, Mertens J, Hilberg O. Acoustic rhinometry: validation by three-dimensionally reconstructed computer tomographic scans. J Appl Physiol. 2000;89:1013–21.

    PubMed  CAS  Google Scholar 

  • Wandalsen GF, Mendes AI, Sole D. Objective improvement in nasal congestion and nasal hyperreactivity with use of nasal steroids in persistent allergic rhinitis. Am J Rhinol Allergy. 2010;24:e32–6.

    Article  PubMed  Google Scholar 

  • Ware JA, Aki K. Continuous and discrete inverse scattering problems in a stratified elastic medium. I. Plane waves at normal incidence. J Acoust Soc Am. 1969;45:911–21.

    Article  Google Scholar 

  • Yamagiwa M. Acoustic evaluation of the efficacy of medical therapy for allergic nasal obstruction. Eur Arch Otorhinolaryngol. 1997;254 Suppl 1:S82–4.

    Article  PubMed  Google Scholar 

  • Yamagiwa M, Hilberg O, Pedersen OF, Lundqvist GR. Evaluation of the effect of localized skin cooling on nasal airway volume by acoustic rhinometry. Am Rev Respir Dis. 1990;141:1050–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Hizal MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hizal, E., Cakmak, O. (2013). Acoustic Rhinometry. In: Önerci, T. (eds) Nasal Physiology and Pathophysiology of Nasal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37250-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37250-6_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37249-0

  • Online ISBN: 978-3-642-37250-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics